A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of composting and soil type on dissipation of veterinary antibiotics in land-applied manures. | LitMetric

Effect of composting and soil type on dissipation of veterinary antibiotics in land-applied manures.

Chemosphere

Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States.

Published: April 2018

The objective of this study was to determine the fate of commonly used veterinary antibiotics in their naturally excreted form when manure-based amendments are applied to soil. Beef cattle were administered sulfamethazine, tylosin, and chlortetracycline and dairy cows were treated with pirlimycin. The resulting manure was composted for 42 d under static or turned conditions and applied at agronomic N rates to sandy, silt, and silty clay loam soils and compared with amendment with corresponding raw manures in sacrificial microcosms over a 120-day period. Antibiotic dissipation in the raw manure-amended soils followed bi-phasic first order kinetics. The first phase half-lives for sulfamethazine, tylosin, chlortetracycline, and pirlimycin ranged from 6.0 to 18, 2.7 to 3.7, 23 to 25, and 5.5-8.2 d, respectively. During the second phase, dissipation of sulfamethazine was negligible, while the half-lives for tylosin, chlortetracycline, and pirlimycin ranged from 41 to 44, 75 to 144, and 87-142 d, respectively. By contrast, antibiotic dissipation in the compost-amended soils followed single-phase first order kinetics with negligible dissipation of sulfamethazine and half-lives of tylosin and chlortetracycline ranging from 15 to 16 and 49-104 d, respectively. Pirlimycin was below the detection limit in the compost-amended soils. After incubating 120 d, antibiotics in compost-amended soils (up to 3.1 μg kg) were significantly lower than in manure-amended soils (up to 19 μg kg, p < .0001), with no major effect of soil type on the dissipation. Risk assessment suggested that composting can reduce antibiotic resistance selection potential in manure-amended soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.12.161DOI Listing

Publication Analysis

Top Keywords

tylosin chlortetracycline
16
compost-amended soils
12
veterinary antibiotics
8
sulfamethazine tylosin
8
antibiotic dissipation
8
manure-amended soils
8
order kinetics
8
chlortetracycline pirlimycin
8
pirlimycin ranged
8
dissipation sulfamethazine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!