The search for more efficient and less aggressive cancer treatment methods has intensified over the last decades and has involved many scientific areas. To provide skin cancer patients with better quality of life, this work aims to incorporate chemotherapy into polyamide membranes, functionalized by the sol-gel methodology, for controlled drug release at the target tissue. A 200-micrometer-thick flexible polyamide membrane prepared by Additive Manufacture was activated and functionalized with the alkoxide 3-chloropropyltriethoxysilane, which was followed by incorporation of the antitumor agent cisplatin. Membrane functionalization with the alkoxide was attested by infrared absorption spectroscopy, which evidenced a band at 1100cm, due to Si-O-Si vibration, and typical cisplatin bands at 3200 and 1600cm. The thermogravimetric curve revealed increased silicon oxide and platinum residues. Drug release was tested in simulated body fluid. Cytotoxicity was evaluated by the Cell Proliferation Kit, which gave IC of 23.95μgM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2017.12.013 | DOI Listing |
Polymers (Basel)
January 2025
Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile.
This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Saint-Petersburg State Institute of Technology, Technical University, 190013 Saint Petersburg, Russia.
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 1576 Sofia, Bulgaria.
This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd., University II DC, Cachoeira do Sul 96503-205, RS, Brazil.
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Postgraduate Program in Process and Technologies Engineering (PGEPROTEC), University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil.
The starting point for the preparation of polymeric membranes by phase inversion is having a thermodynamically stable solution. Ternary diagrams for the polymer, solvent, and non-solvent can predict this stability by identifying the phase separation and describing the thermodynamic behavior of the membrane formation process. Given the lack of data for the ternary system water (HO)/hydrochloric acid (HCℓ)/polyamide 66 (PA66), this work employed the Flory-Huggins theory for the construction of the ternary diagrams (HO/HCℓ/PA66 and HO/formic acid (FA)/PA66) by comparing the experimental data with theoretical predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!