In the present study, different photoperiods and nutritional conditions were applied to a mixed wastewater-borne cyanobacterial culture in order to enhance the intracellular accumulation of polyhydroxybutyrates (PHBs) and carbohydrates. Two different experimental set-ups were used. In the first, the culture was permanently exposed to illumination, while in the second it was submitted to light/dark alternation (12 h cycles). In both cases, two different nutritional regimes were also evaluated, N-limitation and P-limitation. Results showed that the highest PHB concentration (104 mg L) was achieved under P limited conditions and permanent illumination, whereas the highest carbohydrate concentration (838 mg L) was obtained under N limited condition and light/dark alternation. With regard to bioplastics and biofuel generation, this study demonstrates that the accumulation of PHBs (bioplastics) and carbohydrates (potential biofuel substrate) is favored in wastewater-borne cyanobacteria under conditions where nutrients are limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2018.01.001 | DOI Listing |
Chemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Microbiology and Biotechnology, Technical University of Moldova, MD 2028 Chisinau, Moldova.
(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.
View Article and Find Full Text PDFMicrobes Environ
January 2025
Department of Applied Chemistry, Kitami Institute of Technology.
To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp.
View Article and Find Full Text PDFWater Res
December 2024
GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:
Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.
View Article and Find Full Text PDFSci Rep
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal.
Diabetes is a pandemic disease that causes the loss of control of glucose regulation in the organism, in consequence of dysfunction of insulin production or functionality. In this work, the antidiabetic bioactivity of 182 fractions from 19 cyanobacteria strains derived from the LEGE Culture Collection were analysed using the 2-NBDG assay in zebrafish larvae. From this initial screening, two fractions (57 (06104_D) and 107 (03283_B)) were identified as promising insulin mimetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!