14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum.

Appl Microbiol Biotechnol

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.

Published: February 2018

Ganoderma lucidum, which contains many pharmacologically active compounds, is regarded as a traditional medicinal fungus. Nevertheless, the scarcity of basic research limits the commercial value and utilization of G. lucidum. As a class of highly conserved, phosphopeptide-binding proteins present in all eukaryotes, 14-3-3 proteins play vital roles in controlling multiple physiological processes, including signal transduction, primary metabolism, and stress responses. However, knowledge of the roles of 14-3-3 proteins in Basidiomycetes is sparse. In this article, two homologs of 14-3-3 proteins, encoded by the two distinct genes GlBmh1 and GlBmh2, were distinguished in G. lucidum. We found that GlBmh1 and GlBmh2 were expressed at various developmental stages, including in vegetative mycelium cultivated on solid medium and in primordia and fruiting bodies. Moreover, we constructed GlBmh1 single-silenced strains, GlBmh2 single-silenced strains, and 14-3-3 double-silenced mutants for further study. When GlBmh1 and GlBmh2 were inhibited by RNA interference, the growth rate of mycelia was decreased, and the distance between the aerial hyphal branches was reduced; responses to various abiotic stresses such as oxidants and cell wall and osmotic stressors were also changed. Furthermore, the contents of secondary metabolite ganoderic acids (GAs) were increased after GlBmh1 and GlBmh2 were simultaneously silenced. Taken together, we provide evidence that implicates potential roles for the two 14-3-3 proteins in affecting growth and GA biosynthesis, thereby providing new insights into the basic functions of 14-3-3 proteins in G. lucidum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-017-8711-9DOI Listing

Publication Analysis

Top Keywords

14-3-3 proteins
24
glbmh1 glbmh2
16
ganoderma lucidum
8
roles 14-3-3
8
single-silenced strains
8
14-3-3
7
proteins
6
lucidum
5
glbmh1
5
glbmh2
5

Similar Publications

NHSL3 controls single and collective cell migration through two distinct mechanisms.

Nat Commun

January 2025

Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.

View Article and Find Full Text PDF

YAP K236 Acetylation Facilitates its Nucleic Export and Deprived the Protection against Cardiac Hypertrophy in Mice.

Pharmacol Res

December 2024

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China. Electronic address:

The subcellular localization of Yes-associated protein (YAP) is dynamically regulated by post-transcriptional modifications, critically influencing cardiac function. Despite its significance, the precise mechanism controlling YAP nuclear sequestration and its role in cardiac hypertrophy remain poorly defined. In this study, utilizing immunoprecipitation-mass spectrometry, we identified potential acetylation sites and interacting proteins of YAP.

View Article and Find Full Text PDF

Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown.

View Article and Find Full Text PDF

Protein PARylation: a novel regulator of fungal virulence.

Trends Microbiol

December 2024

Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Protein PARylation is a reversible post-translational modification; however, its role in fungal virulence has remained elusive. Recently, Gao et al. demonstrated that PARylation of two 14-3-3 regulatory proteins by poly(ADP-ribose) polymerase is essential for the virulence of rice blast fungus, highlighting the critical regulatory function of PARylation in fungal pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!