Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow.

Cytotechnology

Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Express Way, Next to the Milad Tower, Tehran, 14665-1157, Iran.

Published: April 2018

So far, substantial attentions have been attracted to the application of mesenchymal stem or stromal cells (MSCs) in different therapeutic approaches. Although human bone marrow is commonly considered as a major source for MSCs, having an invasive collection method, ethical consideration and donor availability create a challenge for scientists, leading them to explore better alternative sources for MSCs. The study presented here aimed to characterize and compare osteogenic capacity of MSCs obtained from the amnion membrane (AM) with those originated from BM. Cells isolated from AMs and BMs were cultured in DMEM-low glucose supplemented with FBS, penicillin and streptomycin. After 24 h of incubation, cells adhered to the plastic surface of the flasks were allowed to proliferate for more days. A sub-confluent culture of cells was trypsinized and re-cultured. The MSCs were characterized by the expression of specific markers with flow cytometry. The osteogenic differentiation of MSCs was also validated by alkaline phosphatase and alizarian red S staining. Our results showed comparable expression of MSCs specific markers for both MSC sources (AM and BM). We also showed the optimum osteogenic differentiation of MSCs from both sources whereas hAM-MSCs revealed higher proliferation rate. We found no essential immunophenotypic differences between MSCs originated from bone marrow and amnion membrane while their differentiations into osteoblastic linage were also comparable. This was in addition to the higher proliferation rate observed for hAM-MSCs which suggests hAM as an easily accessible and reliable source of MSCs applicable for bone engineering, regenerative medicine or other therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851966PMC
http://dx.doi.org/10.1007/s10616-017-0177-1DOI Listing

Publication Analysis

Top Keywords

amnion membrane
12
bone marrow
12
mscs
10
osteogenic capacity
8
mesenchymal stem
8
stem stromal
8
stromal cells
8
therapeutic approaches
8
source mscs
8
specific markers
8

Similar Publications

Background: Dehydrated human amnion/chorion membrane (dHACM) has shown potential in enhancing neurovascular recovery and functional outcomes in robot-assisted radical prostatectomy (RARP).

Aim: To evaluate the effects of dHACM on continence recovery, sexual function, and oncological outcomes in patients undergoing RARP.

Methods: A systematic review and meta-analysis were conducted following PRISMA guidelines, analyzing data from PubMed, Cochrane, and EMBASE.

View Article and Find Full Text PDF

Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.

View Article and Find Full Text PDF

Our prior findings showed that BCL2A1 in neutrophils is highly expressed in the extra-placental membranes (EPMs) of both the human spontaneous preterm-birth (PTB) (i.e., PTL or preterm PROM) and nonhuman-primate PTB model.

View Article and Find Full Text PDF

Background: Pulmonary fibrosis (PF) is a common and multidimensional devastating interstitial lung disease. The development of novel and more effective interventions for PF is an urgent clinical need. A previous study has found that miR-181a-5p plays an important role in the development of PF, and human amniotic mesenchymal stem cells (hAMSCs) exert potent therapeutic potential on PF.

View Article and Find Full Text PDF

Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.

Hum Cell

January 2025

Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!