As a consequence of acquired or intrinsic disease resistance, the prognosis for patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) is dismal. Novel, less toxic drugs are clearly needed. One of the most promising emerging therapeutic strategies for cancer treatment is targeted immunotherapy. Immune therapies have improved outcomes for patients with other hematologic malignancies including B-cell ALL; however no immune therapy has been successfully developed for T-ALL. We hypothesize targeting CD38 will be effective against T-ALL. We demonstrate that blasts from patients with T-ALL have robust surface CD38 surface expression and that this expression remains stable after exposure to multiagent chemotherapy. CD38 is expressed at very low levels on normal lymphoid and myeloid cells and on a few tissues of nonhematopoietic origin, suggesting that CD38 may be an ideal target. Daratumumab is a human immunoglobulin G1κ monoclonal antibody that binds CD38, and has been demonstrated to be safe and effective in patients with refractory multiple myeloma. We tested daratumumab in a large panel of T-ALL patient-derived xenografts (PDX) and found striking efficacy in 14 of 15 different PDX. These data suggest that daratumumab is a promising novel therapy for pediatric T-ALL patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833263PMC
http://dx.doi.org/10.1182/blood-2017-07-794214DOI Listing

Publication Analysis

Top Keywords

t-cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
t-all
6
patients
5
cd38
5
preclinical efficacy
4
daratumumab
4
efficacy daratumumab
4
daratumumab t-cell
4

Similar Publications

Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.

View Article and Find Full Text PDF

Introduction: Graft-versus-host disease (GvHD) remains a major complication of allogeneic stem cell transplantation (allo-SCT), affecting 30-70% of patients (representing 800 new patients per year in the UK). The risk is higher in patients undergoing unrelated allo-SCT. About 1 in 10 patients die as a result of GvHD or through complications of its treatment.

View Article and Find Full Text PDF

mTOR/p70S6K signaling pathway promotes fibrillin-1 expression in AKI-to-CKD transition post CA/CPR.

Cell Signal

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:

The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!