Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Satellite glial cells (SGCs) envelope the neuronal somas in the dorsal root ganglia (DRG) and are believed to provide important neuronal support. Animal models of peripheral nerve injury, diabetes or chemotherapy all demonstrate activation of SGCs, suggesting important physiological roles for SGCs in various states of peripheral neuropathy. However, the biology of these glial cells is only poorly characterized under normal as well as pathological conditions due to suboptimal isolation methods.
New Method: The method presented here allows complete dissociation and isolation of highly pure SGCs from rat DRGs by fluorescence-activated cell sorting (FACS) using SGC-specific antibodies. The method further allows purification of high-quality RNA from the fixed and permeabilized cells.
Results: The purified RNA shows very little degradation, demonstrated by RNA integrity number (RIN) analysis with an average value of 8. The purified RNA, therefore, lends itself very well to downstream applications such as qPCR and transcriptome analysis.
Comparison With Existing Methods: Primary SGC cultures have previously been established for in vitro studies. Unfortunately, SGCs quickly change morphology and gene expression in vitro, complicating biologically meaningful interpretation of the obtained results. In contrast, this method allows the investigation of SGC gene regulation in vivo by isolation of high-quality RNA.
Conclusions: This method enables investigation of SGC transcriptional response in vivo by isolation and analysis of mRNA expression, allowing a more detailed investigation of SGC biology under normal as well as pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2018.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!