Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-resolution atomic force microscopy (AFM) is a powerful technique for the direct visualization of single molecules. Here, AFM is applied to characterize the oligomeric state of hemagglutinins of the influenza virus. Hemagglutinins are known to be present in a trimeric form inside the viral envelope. However, recombinant hemagglutinins are also present as large oligomers, which impair the functional activity of the protein. Five commercial recombinant hemagglutinins from the viral strains H1, H3, H5, H7, and H9 were studied with high-resolution AFM. Functionally inactive hemagglutinins were shown to have a higher percentage of large oligomers compared with the proteins with functional activity. Large oligomers were revealed to be unstable; the oligomeric state of hemagglutinin was affected by pH or the presence of ligands. Antibody binding shifts the balance to small oligomers, whereas DNA aptamer induced the formation of large associates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2017.12.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!