Neural basis for reduced executive performance with hypoxic exercise.

Neuroimage

Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan; Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan. Electronic address:

Published: May 2018

While accumulating evidence suggests positive effects of exercise on executive function, such effects vary with environment. In particular, exercise in a hypoxic environment (hypobaric or normobaric hypoxia), leading to decreased oxygen supply, may dampen or cancel such effects. Thus, we further explore the relation between the effects of hypoxic exercise on executive function and their underlying neural mechanisms by monitoring changes of cortical activation patterns using functional near-infrared spectroscopy (fNIRS). Fifteen healthy participants performed color-word Stroop tasks (CWST) before and after a 10 min bout of moderate-intensity exercise (50%V̇O) under normoxic and hypoxic conditions (fraction of inspired oxygen (FIO) = 0.135). During the CWST, we monitored prefrontal activation using fNIRS. CWST performance under hypoxic conditions decreased compared with normoxic conditions. In addition, CWST-related activation in the left dorsolateral prefrontal cortex (DLPFC) was reduced after a bout of hypoxic exercise. There was statistically significant association between decreased CWST performance and activation in the left DLPFC. These results suggest that moderate exercise under normobaric hypoxic conditions has negative effects on executive function by reducing task-related activations in the DLPFC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2017.12.091DOI Listing

Publication Analysis

Top Keywords

hypoxic exercise
12
executive function
12
hypoxic conditions
12
performance hypoxic
8
exercise executive
8
cwst performance
8
activation left
8
hypoxic
7
exercise
7
effects
5

Similar Publications

Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.

View Article and Find Full Text PDF

Enhanced cardiac vagal activity and mood after low-dose hypoxic gas inhalation in healthy young adults.

J Physiol Sci

December 2024

Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan. Electronic address:

Developing strategies to enhance cardiac vagal activity (CVA) is essential for improving mood and managing stress. Although hypoxia inhalation may boost CVA, the optimal acute hypoxic conditions remain unclear. Therefore, we aimed to achieve a comprehensive understanding of the hypoxic conditions required to improve CVA and mood following hypoxia.

View Article and Find Full Text PDF

Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.

View Article and Find Full Text PDF

Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared to longer interventions, possibly due to the lower accumulated thermal 'dose'. It is unknown if matching thermal 'dose' over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: i) 'condensed' HA (CHA; =17 males) consisting of 4×75 min∙day heat exposures (target rectal temperature ()=38.

View Article and Find Full Text PDF

The physiological sequelae of pre-term birth might influence the responses of this population to hypoxia. Moreover, identifying variables associated with development of acute mountain sickness (AMS) remains a key practically significant area of altitude research. We investigated the effects of pre-term birth on nocturnal oxygen saturation ( ) dynamics and assessed the predictive potential of nocturnal -related metrics for morning AMS in 12 healthy adults with gestational age < 32 weeks (pre-term) and 12 term-born control participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!