Satellite cells, adult stem cells in skeletal muscle tissue, reside within a mechanically dynamic three-dimensional microenvironment. With each contraction-relaxation cycle, a satellite cell is expected to experience tensile, shear, and compressive stresses, and through cell-extracellular matrix interactions, also gauge the stiffness of the niche. Via mechanoreceptors, cells can sense these biophysical parameters of the niche, which serve to physically induce conformational changes that impact biomolecule activity, and thereby alter downstream signal transduction pathways and ultimately cell fate. An emerging body of literature supports the notion that myogenic cells, too, integrate biochemical factors together with biomechanical stresses and that this may serve to provide spatio-temporal control of cell fate in the complicated three-dimensional niche. Further, skeletal muscle regenerative medicine therapies are being improved by applying this fresh insight. In this focused chapter, the progression of skeletal muscle regeneration is dissected into a dynamic conversation between muscle progenitor cells and the mechanical properties of the extracellular matrix. The significance of biophysical regulation to myogenic repair is reinforced by the exaggerative influences of extrinsic mechanical stresses and the pathological implications of ECM dysregulation. Additional fundamental studies that further define the satellite cell biophysical environment in health, regeneration, aging, and disease may serve to close knowledge gaps and bolster skeletal muscle regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ctdb.2017.08.007 | DOI Listing |
Radiology
January 2025
From the Department of Radiology (J.H.L.) and Department of Thoracic and Cardiovascular Surgery (J.L., Y.J.J., S.Y.P., J.H.C., Y.S.C., J.K., Y.M.S., H.K.K.), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 115 Irwon-ro, Gangnam-gu, Seoul 06355, Korea (D.K., J.L., S.Y.P., S.K., J.C.); Center for Clinical Epidemiology, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea (D.K., J.C.); Patient-Centered Outcomes Research Institute, Samsung Medical Center, Seoul, Korea (J.L., Y.M.S., S.K., H.K.K., J.C.); and Department of Epidemiology and Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md (J.C.).
Background A comprehensive assessment of skeletal muscle health is crucial to understanding the association between improved clinical outcomes and obesity as defined by body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) in lung cancer, but limited studies have been conducted on this topic. Purpose To investigate the association between BMI-defined obesity and survival in patients with non-small cell lung cancer who underwent curative resection, with a specific focus on the status of skeletal muscle assessed at CT. Materials and Methods This retrospective study investigated Korean patients with non-small cell lung cancer who underwent curative resection between January 2008 and December 2019.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
Biomater Transl
November 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens.
View Article and Find Full Text PDFiScience
January 2025
Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
Tunas are high-performance pelagic fishes of considerable economic importance and have a suite of biological adaptations for high-speed locomotion. In contrast to our understanding of tuna body and muscle function, mechanosensory systems of tuna are poorly understood. Here we present the discovery of a remarkable sensory lateral line canal within the bilateral tuna keels with tubules that extend to the upper and lower keel surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!