A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling and simulation of continuous powder blending applied to a continuous direct compression process. | LitMetric

Continuous manufacturing techniques are increasingly being adopted in the pharmaceutical industry and powder blending is a key operation for solid-dosage tablets. A modeling methodology involving axial and radial tanks-in-series flowsheet models is developed to describe the residence time distribution (RTD) and blend uniformity of a commercial powder blending system. Process data for a six-component formulation processed in a continuous direct compression line (GEA Pharma Systems) is used to test the methodology. Impulse tests were used to generate experimental RTDs which are used along with parameter estimation to determine the number of axial tanks in the flowsheet. The weighted residual from the parameter estimation was less than the χ value at a 95% confidence indicating a good fit between the model and measured data. In-silico impulse tests showed the tanks-in-series modeling methodology could successfully describe the RTD behavior of the blenders along with blend uniformity through the use of radial tanks. The simulation output for both impulse weight percentage and blend uniformity were within the experimentally observed variance.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10837450.2018.1425429DOI Listing

Publication Analysis

Top Keywords

powder blending
12
blend uniformity
12
continuous direct
8
direct compression
8
modeling methodology
8
impulse tests
8
parameter estimation
8
modeling simulation
4
continuous
4
simulation continuous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!