The use of reclaimed wastewater for irrigation is foreseen as a possible strategy to mitigate the pressure on water resources in dry regions. However, there is the risk of potential accumulation of contaminants of emerging concern (CECs) in the edaphic environment, their percolation and consequently contamination of aquifers. In the present study, we measured the levels of a wide range of commonly used pharmaceutically active compounds (PhACs) in sewage from a local wastewater treatment plant (WWTP) and in soils irrigated with treated wastewater. Analysis of target compounds showed total concentrations between 73 and 372 μg L in WWTP influents, and from 3 to 41 μg L in effluents. The total concentrations of PhACs detected in surface soil samples were in the range of 2 and 15 ng g, with predominance of analgesics and anti-inflammatories (maximum concentration = 10.05 ng g), followed by antibiotics and psychiatric drugs (maximum concentration = 5.45 ng g and 3.78 ng g, respectively). Both effluent samples and irrigated soils shared similar compositional patterns, with compounds such as hydrochlorothiazide and diclofenac being predominant. Additionally, PhACs were also detected in soil samples at a depth of 150 cm, indicating that these chemical undergo leaching associated with heavy-rain episodes. Their occurrence in soils was affected by temperature too, as maximum concentrations were measured in colder months (up to 14 ng g), indicating higher persistence at lower temperatures. Finally, the ecotoxicological risk of PhACs in soil was evaluated by calculating their risk quotients (RQs). The risk was very low as RQ values ranged between <0.01 and 0.07. However, this initial assessment could be improved by future works on toxicity using specific terrestrial organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2017.12.085 | DOI Listing |
Sci Rep
January 2025
School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland.
The Chinese government attaches great importance to the ecological restoration of abandoned open-pit mines, increasing the area of cultivated land, and ensuring food security. Soil reconstruction is a crucial step in ecological restoration of abandoned open-pit mines. This study investigated the utilization of hydrophobic sand to create an Air-Permeable Aquiclude (APAC) under the plant root zones, thereby minimizing water infiltration and enhancing soil aeration.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.
Water is crucial for meeting sustainability targets, but its unsustainable use threatens human wellbeing and the environment. Past assessments of water scarcity (i.e.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China. Electronic address:
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!