Pomacea canaliculata is a mollusk potentially useful as a biomonitor species of freshwater quality. This work explores the ability of snail tissues and symbiotic corpuscles to bioconcentrate and depurate mercury, arsenic, and uranium. Adult snails cultured in metal-free reconstituted water were exposed for eight weeks (bioaccumulation phase) to water with Hg (2 μgL), As (10 μgL), and U (30 μgL) and then returned to the reconstituted water for other additional eight weeks (depuration phase). Elemental concentrations in digestive gland, kidney, symbiotic corpuscles and particulate excreta were determined by neutron activation analysis. The glandular symbiotic occupancy was measured by morphometric analysis. After exposure, the kidney showed the highest concentration of Hg, while the digestive gland accumulated mainly As and U. The subcellular distribution in symbiotic corpuscles was ∼71%, ∼48%, and ∼11% for U, Hg, and As, respectively. Tissue depuration between weeks 8 and 16 was variable amongst elements. At week 16, the tissue depuration of U was the highest (digestive gland = 92%; kidney = 80%), while it was lower for Hg (digestive gland = 51%; kidney = 53%). At week 16, arsenic showed a differential pattern of tissue depuration (digestive gland = 23%; kidney = 88%). The symbiotic detoxification of the three elements in excreta was fast between weeks 8 and 10 and it was slower after on. At the end of the depuration, each element distributed differentially in digestive gland and symbiotic corpuscles. Our findings show that symbiotic corpuscles, digestive gland and kidney P. canaliculata are sensitive places for biomonitoring of Hg, As and U.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.12.145 | DOI Listing |
Sensors (Basel)
May 2023
Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
In order to advance the development of sensors fabricated with monofunctional sensation systems capable of a versatile response to tactile, thermal, gustatory, olfactory, and auditory sensations, mechanoreceptors fabricated as a single platform with an electric circuit require investigation. In addition, it is essential to resolve the complicated structure of the sensor. In order to realize the single platform, our proposed hybrid fluid (HF) rubber mechanoreceptors of free nerve endings, Merkel cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles mimicking the bio-inspired five senses are useful enough to facilitate the fabrication process for the resolution of the complicated structure.
View Article and Find Full Text PDFSensors (Basel)
January 2023
Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
In order to advance engineering applications of robotics such as wearable health-monitoring devices, humanoid robots, etc., it is essential to investigate the tactile sensations of artificial haptic sensors mimicking bioinspired human cutaneous mechanoreceptors such as free nerve endings, Merkel's cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles. The generated receptor's potential response to extraneous stimuli, categorized as slow adaption (SA) or fast adaption (FA), is particularly significant as a typical property.
View Article and Find Full Text PDFSensors (Basel)
September 2022
Faculty of Symbiotic Systems Sciences, Fukushima University, Fukushima 960-1296, Japan.
The development of gustatory sensors is essential for the development of smart materials for use in robotics, and in the food, beverage, and pharmaceutical industries. We therefore designed a prototype of a rubber tongue embedded with a gustatory receptor mimicking a human tongue using our previously proposed hybrid fluid rubber (HF rubber) and an electrolytic polymerization technique. The fabricated gustatory receptor was composed of Pacinian corpuscles, which are well known and have already been elucidated as effective haptic and auditory receptors in previous studies.
View Article and Find Full Text PDFSensors (Basel)
July 2022
Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
The development of auditory sensors and systems is essential in smart materials of robotics and is placed at the strategic category of mutual communication between humans and robots. We designed prototypes of the rubber-made equilibrium and auditory sensors, mimicking hair cells in the saccule and the cochlea at the vestibule of the human ear by utilizing our previously proposed technique of electrolytic polymerization on the hybrid fluid rubber (HF rubber). The fabricated artificial hair cells embedded with mimicked free nerve endings and Pacinian corpuscles, which are well-known receptors in the human skin and have already been elucidated effective in the previous study, have the intelligence of equilibrium and auditory sensing.
View Article and Find Full Text PDFSensors (Basel)
October 2021
Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of cutaneous receptors embedded in a human skin tissue utilizing artificial materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!