Hydrogels comprised of alginate and gelatin have demonstrated potential as biomaterials in three dimensional (3D) bioprinting applications. However, as with all hydrogel-based biomaterials used in extrusion-based bioprinting, many parameters influence their performance and there is limited data characterising the behaviour of alginate-gelatin (Alg-Gel) hydrogels. Here we investigated nine Alg-Gel blends by varying the individual constituent concentrations. We tested samples for printability and print accuracy, compressive behaviour and change over time, and viability of encapsulated mesenchymal stem cells in bioprinted constructs. Printability tests showed a decrease in strand width with increasing concentrations of Alg-Gel. However due to the increased viscosity associated with the higher Alg-Gel concentrations, the minimum width was found to be 0.32mm before blends became too viscous to print. Similarly, printing accuracy was increased in higher concentrations, exceeding 90% in some blends. Mechanical properties were assessed through uniaxial compression testing and it was found that increasing concentrations of both Alg and Gel resulted in higher compressive modulus. We also deemed 15min crosslinking in calcium chloride to be sufficient. From our data, we propose a blend of 7%Alg-8%Gel that yields high printability, mechanical strength and stiffness, and cell viability. However, we found the compressive behaviour of Alg-Gel to reduce rapidly over time and especially when incubated at 37°C. Here we have reported relevant data on Alg-Gel hydrogels for bioprinting. We tested for biomaterial properties and show that these hydrogels have many desirable characteristics that are highly tunable. Though further work is needed before practical use in vivo can be achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2017.12.018 | DOI Listing |
Biomimetics (Basel)
January 2025
Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China.
The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues.
View Article and Find Full Text PDFCont Lens Anterior Eye
December 2024
Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK. Electronic address:
Antibiotic eyedrops typically require frequent instillation due to the eye's defensive mechanisms limiting drugs from reaching target sites. This may risk patient non-adherence and treatment inefficacy. The aim of this study was to develop a biocompatible and fully soluble ocular film insert to enhance the delivery of levofloxacin, as well as the handling procedure for its administration; based on the anatomical dimensions and physiological conditions of the human eye.
View Article and Find Full Text PDFCommun Eng
November 2024
Department of Physics, University of North Texas, Denton, TX, USA.
3D bioprinting has excellent potential in tissue engineering, regenerative medicine, and drug delivery systems due to the ability to fabricate intricate structures that are challenging to make with conventional manufacturing methods. However, the complexity of parametric combinations and lack of product quality control have restricted soft hydrogel bioprinting from practical applications. Here we show an in-situ ultrasound monitoring system that reveals the alginate-gelatin hydrogel's additive manufacturing process.
View Article and Find Full Text PDFTransl Lung Cancer Res
October 2024
Department of Pharmacy, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background: Lung cancer is one of the most common malignant tumors worldwide. Despite advances in lung cancer treatment, patients still face challenges related to drug resistance and recurrence. Current methods for evaluating anti-cancer drug activity are insufficient, as they rely on two-dimensional (2D) cell culture and animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!