The aim was to investigate the osseointegration of a novel coating-plasma-sprayed nanostructured zirconia (NSZ) in dental implant. Nanostructured zirconia coating on non-thread titanium implant was prepared by plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo, nanostructured zirconia-coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by removal torque (RTQ) test. The osseointegration was observed by scanning electron microscopy (SEM), micro computed tomography (Micro CT) and histological analyses. Quantified parameters were calculated, including removal torque, Bone Volume to Tissue Volume (BV/TV), Trabecular Thickness (Tb. Th), Trabecular Number (Tb. N), Trabecular Separation/Spacing (Tb. Sp), and Bone-Implant contact (BIC) percentage. The statistical differences were detected by two-tail Mann-Whitney U test (SPSS 20.0). The surface roughness (1.58µm) and wettability (54.61°) of nanostructured zirconia coated implant was more suitable than those of titanium implant (0.598µm and 74.38°) for osseointegration and hierarchical surface morphology could be seen on zirconia coating. The histological analyses showed that zirconia coated implant induced earlier and more condensed bone formation than titanium implant at 2 and 4 weeks. Quantified parameters showed the significant differences between these two groups at early healing period, but the differences between these two groups decreased with the increase of healing period. All these results demonstrated that plasma sprayed zirconia coated implant induced better bone formation than titanium implant at early stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/aaid-joi-D-17-00124 | DOI Listing |
Sci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.
J Prosthet Dent
January 2025
Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.
Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.
Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.
Eur J Dent
January 2025
Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: The mechanical stimulation known as orthodontic mechanical force (OMF) causes biological reactions in orthodontic tooth movement (OTM). Heat shock protein-70 (HSP-70) needs pro-inflammatory cytokines to trigger bone resorption in OTM; nevertheless, heat shock protein-10 (HSP-10), a "Alarmin" cytokine, should control these pro-inflammatory cytokines to get the best alveolar bone remodeling (ABR). L.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:
Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!