The modern semiclassical theory of a Bloch electron in a magnetic field encompasses the orbital magnetization and geometric phase. Beyond this semiclassical theory lies the quantum description of field-induced tunneling between semiclassical orbits, known as magnetic breakdown. Here, we synthesize the modern semiclassical notions with quantum tunneling-into a single Bohr-Sommerfeld quantization rule that is predictive of magnetic energy levels. This rule is applicable to a host of topological solids with unremovable geometric phase, that also unavoidably undergo breakdown. A notion of topological invariants is formulated that nonperturbatively encode tunneling, and is measurable in the de Haas-van Alphen effect. Case studies are discussed for topological metals near a metal-insulator transition and overtilted Weyl fermions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.256601 | DOI Listing |
Vaccine
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China. Electronic address:
(1) Background: The administration of a live attenuated influenza vaccine (LAIV) has emerged as a viable option for preventing pediatric infections. The LAIV vaccine is available in China based on efficacy results. However, LAIV immunogenicity in children aged 3-17 years old in China has not yet to be studied and reported broadly.
View Article and Find Full Text PDFPLoS One
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China.
Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.
View Article and Find Full Text PDFSci Total Environ
December 2024
Greentech Research Team, Thuyloi University, 175 Tayson Street, Dongda District, Hanoi, Viet Nam.
In the past, unsanitary landfills were a common method for municipal solid waste disposal in developing countries. Although many nations have closed these landfills, the environmental pollution risks and impacts persist. This study introduces a new multi-criteria risk assessment framework specifically designed for closed, unsanitary landfills.
View Article and Find Full Text PDFExpert Rev Vaccines
December 2024
Guangzhou Patronus Biotech Co, Ltd, Guangzhou, China.
Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.
Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).
J Phys Chem C Nanomater Interfaces
December 2024
Instituto IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain.
Graphene adsorbed on Ru(0001) has been widely used as a template for adsorbing and isolating molecules, assembling organic-molecule structures with desired geometric and electronic properties and even inducing chemical reactions that are challenging to achieve in the gas phase. To fully exploit the potential of this substrate, for example, by being able to tune a graphene-based catalyst to perform optimally under specific conditions, it is crucial to understand the factors and mechanisms governing the molecule-substrate interaction. To contribute to this effort, we have conducted a combined experimental and theoretical study of the adsorption of cyanomethyl radicals (-CHCN) on this substrate below room temperature by performing scanning tunneling microscopy experiments and density functional theory simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!