Geometric Phase and Orbital Moment in Quantization Rules for Magnetic Breakdown.

Phys Rev Lett

Department of Physics, Yale University, New Haven, Connecticut 06520, USA.

Published: December 2017

The modern semiclassical theory of a Bloch electron in a magnetic field encompasses the orbital magnetization and geometric phase. Beyond this semiclassical theory lies the quantum description of field-induced tunneling between semiclassical orbits, known as magnetic breakdown. Here, we synthesize the modern semiclassical notions with quantum tunneling-into a single Bohr-Sommerfeld quantization rule that is predictive of magnetic energy levels. This rule is applicable to a host of topological solids with unremovable geometric phase, that also unavoidably undergo breakdown. A notion of topological invariants is formulated that nonperturbatively encode tunneling, and is measurable in the de Haas-van Alphen effect. Case studies are discussed for topological metals near a metal-insulator transition and overtilted Weyl fermions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.256601DOI Listing

Publication Analysis

Top Keywords

geometric phase
12
magnetic breakdown
8
modern semiclassical
8
semiclassical theory
8
phase orbital
4
orbital moment
4
moment quantization
4
quantization rules
4
magnetic
4
rules magnetic
4

Similar Publications

Immunogenicity and safety of live attenuated influenza vaccine in children aged 3-17 years in China.

Vaccine

December 2024

Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China. Electronic address:

(1) Background: The administration of a live attenuated influenza vaccine (LAIV) has emerged as a viable option for preventing pediatric infections. The LAIV vaccine is available in China based on efficacy results. However, LAIV immunogenicity in children aged 3-17 years old in China has not yet to be studied and reported broadly.

View Article and Find Full Text PDF

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

In the past, unsanitary landfills were a common method for municipal solid waste disposal in developing countries. Although many nations have closed these landfills, the environmental pollution risks and impacts persist. This study introduces a new multi-criteria risk assessment framework specifically designed for closed, unsanitary landfills.

View Article and Find Full Text PDF

Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.

Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).

View Article and Find Full Text PDF

Jumping Dynamics of Cyanomethyl Radicals on Corrugated Graphene/Ru(0001) Substrates.

J Phys Chem C Nanomater Interfaces

December 2024

Instituto IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain.

Graphene adsorbed on Ru(0001) has been widely used as a template for adsorbing and isolating molecules, assembling organic-molecule structures with desired geometric and electronic properties and even inducing chemical reactions that are challenging to achieve in the gas phase. To fully exploit the potential of this substrate, for example, by being able to tune a graphene-based catalyst to perform optimally under specific conditions, it is crucial to understand the factors and mechanisms governing the molecule-substrate interaction. To contribute to this effort, we have conducted a combined experimental and theoretical study of the adsorption of cyanomethyl radicals (-CHCN) on this substrate below room temperature by performing scanning tunneling microscopy experiments and density functional theory simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!