It has recently become possible to grow GaAs in the wurtzite crystal phase. This ability allows interesting tests of band-structure theory. Wurtzite GaAs has two closely spaced direct conduction bands as well as three nondegenerate valence bands. The energies of the band edges are not well known, in particular not as a function of temperature. In order to improve the accuracy we have studied the temperature dependence of the conduction band minimum as well as of the second valence band maximum using resonant Raman scattering (of up to 3LO Raman lines). We find that the temperature dependence of the bandgap in wurtzite GaAs is very similar to that in zinc blende GaAs. Our results show that they have the same band gaps not only at 7 K but also at room temperature to within 5 meV. This is in some discrepancy with previous work. We find that the energy difference between the first two Γ and Γ valence bands is constant, around 100 meV, over the investigated temperature range, 7 K to 300 K. Due to a fortuitous spacing of the energy bands we find a very unexpected and strong quadruple resonance in the resonant Raman scattering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr07635e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, Universität Basel, Basel 4056, Switzerland.
A thermal diode, which, by analogy to its electrical counterpart, rectifies heat current, is the building block for thermal circuits. To realize a thermal diode, we demonstrate thermal rectification in a GaAs telescopic nanowire system using the thermal bridge method. We measured a preferred direction of heat flux, achieving rectification values ranging from 2 to 8% as a function of applied thermal bias.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.
Phys Chem Chem Phys
October 2024
School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China.
Recently, the search for materials with high photoelectric conversion efficiency has emerged as a significant research hotspot. Unlike p-n junctions, the bulk photovoltaic effect (BPVE) can also materialize within pure crystals. Here, we propose wurtzite and zinc blende semiconductors without inversion symmetry (AgI, GaAs, CdSe, CdTe, SiGe, ZnSe, and ZnTe) as candidates for achieving the BPVE and investigate the factors that affect the shift current.
View Article and Find Full Text PDFNano Lett
June 2024
Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
Phase separation is an intriguing phenomenon often found in III-V nanostructures, but its effect on the atomic and electronic structures of III-V nanomaterials is still not fully understood. Here we study the variations in atomic arrangement and band structure due to the coexistence of wurtzite (WZ) and zinc blende (ZB) phases in single GaAs nanowires by using scanning transmission electron microscopy and monochromated electron energy loss spectroscopy. The WZ lattice distances are found to be larger (by ∼1%), along both the nanowire length direction and the perpendicular direction, than the ZB lattice.
View Article and Find Full Text PDFNanoscale
March 2024
Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland.
Newly discovered altermagnets are magnetic materials exhibiting both compensated magnetic order, similar to antiferromagnets, and simultaneous non-relativistic spin-splitting of the bands, akin to ferromagnets. This characteristic arises from specific symmetry operation that connects the spin sublattices. In this report, we show with calculations that semiconductive MnSe exhibits altermagnetic spin-splitting in the wurtzite phase as well as a critical temperature well above room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!