Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07388551.2017.1420623 | DOI Listing |
Front Biosci (Landmark Ed)
October 2024
Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia.
Background: Many bacteria are capable of reducing selenium oxyanions, primarily selenite (SeO), in most cases forming selenium(0) nanostructures. The mechanisms of these transformations may vary for different bacterial species and have so far not yet been clarified in detail. Bacteria of the genus , including ubiquitous phytostimulating rhizobacteria, are widely studied and have potential for agricultural biotechnology and bioremediation of excessively seleniferous soils, as they are able to reduce selenite ions.
View Article and Find Full Text PDFJ Trace Elem Med Biol
December 2024
Department of Plant Physiology and Metabolomics, Agricultural Institute, HUN-REN Centre for Agricultural Research, Brunszvik str. 2, Martonvásár 2462, Hungary. Electronic address:
Background: Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (Medicago sativa L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation.
View Article and Find Full Text PDFBiol Trace Elem Res
October 2024
Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
The indigenous arbuscular mycorrhizal fungi (AMF) spores were isolated from rhizosphere soil associated with maize plants grown in natural selenium-impacted agricultural soils present in north-eastern region of Punjab, India (32°46' N, 74°46' N), with selenium concentration ranging from 2.1 to 6.1 mg kg dry weight, and their role in plant growth promotion, mitigation of selenium stress and phytochemical and antioxidant potential of host maize plants in natural seleniferous soil were examined.
View Article and Find Full Text PDFAnn Bot
November 2024
Laboratory of Genetics, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands.
J Hazard Mater
July 2024
Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!