The insulin-like growth factor Ea propeptide (IGF-1Ea) is a powerful enhancer of cardiac muscle growth and regeneration, also blocking age-related atrophy and beneficial in multiple skeletal muscle diseases. The therapeutic potential of IGF-1Ea compared with mature IGF-1 derives from its local action in the area of synthesis. We have developed an adeno-associated virus (AAV) vector for IGF-1Ea delivery to the heart to treat mice after myocardial infarction and examine the reparative effects of local IGF-1Ea production on left ventricular remodelling. A cardiotropic AAV9 vector carrying a cardiomyocyte-specific IGF-1Ea-luciferase bi-cistronic gene expression cassette (AAV9.IGF-1Ea) was administered intravenously to infarcted mice, 5 h after ischemia followed by reperfusion (I/R), as a model of myocardial infarction. Virally encoded IGF-1Ea in the heart improved global left ventricular function and remodelling, as measured by wall motion and thickness, 28 days after delivery, with higher viral titers yielding better improvement. The present study demonstrates that single intravenous AAV9-mediated IGF-1Ea Gene Therapy represents a tissue-targeted therapeutic approach to prevent the adverse remodelling after myocardial infarct.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744701PMC
http://dx.doi.org/10.1038/npjregenmed.2016.1DOI Listing

Publication Analysis

Top Keywords

adeno-associated virus
8
myocardial infarction
8
left ventricular
8
igf-1ea
7
intravenous delivery
4
delivery adeno-associated
4
virus 9-encoded
4
9-encoded igf-1ea
4
igf-1ea propeptide
4
propeptide improves
4

Similar Publications

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Impaired autophagy is reported to promote osteoarthritis (OA). However, the mechanism by which autophagy in regulating meniscus degeneration and OA remains unclear. Here, unconvered aberrant energetic metabolism pattern in meniscus cells with OA is uncovered first, which results in lower adenosine triphosphate (ATP) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!