Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased apoptosis and premature cellular ageing of the diabetic heart underpin the development of diabetic heart disease. The molecular mechanisms underlying these pathologies are still unclear. Here we determined the role of pro-senescence microRNA (miR)-34a in accelerating the ageing of the diabetic heart. RT-PCR analysis showed a significant increase in the level of circulating miR-34a from early stages in asymptomatic type-2 diabetic individuals compared to non-diabetic controls. We also observed significant upregulation of miR-34a in the type-2 human diabetic heart suggesting circulating miR-34a may be cardiac in origin. Moreover, western blot analysis identified marked downregulation of the pro-survival protein sirtuin 1 (SIRT1), a direct target of miR-34a. Analysis of cultured human adult cardiomyocytes exposed to high glucose and cardiac progenitor cells (CPCs) isolated from the diabetic heart confirmed significant upregulation of miR-34a and downregulation of SIRT1, associated with a marked increase in pro-apoptotic caspase-3/7 activity. Although therapeutic inhibition of miR-34a activity restored SIRT1 expression in both cardiomyocytes and CPCs, p53 expression was further upregulated in cardiomyocytes but conversely downregulated in CPCs. In spite of increased p53, miR-34a inhibition significantly reduced high glucose induced apoptotic cell death in cardiomyocytes. However, this effect was not observed in CPCs, which in fact showed reduced proliferation following miR-34a inhibition. Taken together, our results demonstrate upregulation of miR-34a in the diabetic heart and in the circulation from an early stage of the disease. However, inhibition of miR-34a activity has differential effects depending on the cell type, thereby warranting the need to eliminate off-target effects when introducing miR-based therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030067 | PMC |
http://dx.doi.org/10.1038/s41418-017-0047-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!