Mn(III) is a one-electron oxidant, produced in vivo by the Mn peroxidases of white-rot fungi, and thought to be involved in lignin degradation by these organisms. However, Mn(III) has not been shown to oxidize the major nonphenolic substructures of lignin under mild conditions. We have used Mn(III) acetate as a biomimetic model for enzymatically generated Mn(III), and report that low concentrations of this oxidant suffice to oxidize nonphenolic lignin models at physiological temperatures and pH values. Under these conditions, the monomeric lignin model veratryl alcohol was oxidized to veratraldehyde, and the diarylpropane model 1-(3,4-dimethoxyphenyl)-2-phenylpropanol was oxidatively cleaved to veratraldehyde, 1-phenylethanol, and acetophenone. In an attempt to identify other lignin models that might be oxidized by Mn(III) more rapidly, we compared the rates at which Mn(III) was reduced by two guaiacyl models, veratryl alcohol and 1-(3-methoxy-4-isopropoxyphenyl)ethanol, vs two syringyl models, 3,4,5-trimethoxybenzyl alcohol and 1-(3,5-dimethoxy-4-isopropoxyphenyl)ethanol. The results were the opposite of those predicted: the syringyl models were oxidized slower than the guaiacyl models by Mn(III). To investigate the basis for this unexpected result, we recorded the visible absorption spectra of charge-transfer complexes prepared between each of the lignin models and an electron acceptor, tetracyanoethylene or p-chloranil. The results, in general agreement with the kinetic findings, showed that the nonphenolic syringyl lignin models had higher ionization potentials than the guaiacyl models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(89)90044-1DOI Listing

Publication Analysis

Top Keywords

lignin models
20
guaiacyl models
12
models
10
lignin
8
nonphenolic lignin
8
mniii
8
models mniii
8
veratryl alcohol
8
models oxidized
8
syringyl models
8

Similar Publications

Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.

View Article and Find Full Text PDF

Background: Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named Schisandra rubriflora (Franch.).

View Article and Find Full Text PDF

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!