The synthesis of organic-inorganic hybrid compounds based on phenylphosphonate and their use as precursors to form LiMnFePO₄ composites containing carbonaceous substances with sub-micrometric morphology are presented. The experimental procedure includes the preliminary synthesis of Fe and/or Mn phenylphosphonates with the general formula FeMn[(C₆H₅PO₃)(H₂O)] (with 0 < x < 1), which are then mixed at different molar ratios with lithium carbonate. In this way the carbon, obtained from in situ partial oxidation of the precursor organic part, coats the LiMnFePO₄ particles. After a structural and morphological characterization, the electrochemical behavior of lithium iron manganese phosphates has been compared to the one of pristine LiFePO₄ and LiMnPO₄, in order to evaluate the doping influence on the material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793554 | PMC |
http://dx.doi.org/10.3390/ma11010056 | DOI Listing |
Chem Asian J
January 2025
Birla Institute of Technology and Science, Vidya Vihar, 333031, Pilani, INDIA.
Development of a competent and stable electrocatalyst coupled with photovoltaic system for the generation of green hydrogen, can be a plausible answer to the existing energy crisis. Herein, we have developed Ru doped Ni0.95Se via hydrothermal method as a bifunctional catalyst for overall water splitting coupled with photovoltaic system.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.
An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, 11566, Egypt; Department of Chemistry, Faculty of Science, Galala University, New Galala City, Suez, Egypt. Electronic address:
Background: Electrochemical methods, particularly those utilizing sensors, offer distinct advantages over classical analytical methods. They are cost-effective, compatible with mass fabrication, suitable for remote sensing, and can be designed as handheld analyzers. In this context, MIL-101(Cr)-(COOH)₂@MWCNTs was utilized for the first time as a modifier for GCE for the sensitive voltammetric detection of Pb(II), Cu(II), and Hg(II).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
Various sustainable energy conversion techniques like water electrolyzers, fuel cells, and metal-air battery devices are promising to alleviate the issues in fossil fuel consumption. However, their broad employment has been mainly inhibited by the lack of advanced electrocatalysts to accelerate the sluggish kinetics of the three involved half-reactions including oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Recent advances have witnessed the cucurbit[]uril (CB[])-directed strategy as a prominent tool to develop high performance electrocatalysts with either OER, ORR, or HER activities.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:
Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!