Characterization of Proteins Present in Isolated Senile Plaques from Alzheimer's Diseased Brains by MALDI-TOF MS with MS/MS.

ACS Chem Neurosci

Department of Chemistry , University of Texas at San Antonio, One UTSA Circle , San Antonio , Texas 78249 , United States.

Published: April 2018

The increase of insoluble senile plaques in the brain is a primary hallmark of Alzheimer's disease. The usefulness of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with tandem MS for the characterization of senile plaques from AD brains and the relevance of the components identified to furthering AD research using MS is discussed. Thirty-three components were reproducibly observed within tryptic aliquots of senile plaques from two different AD brains after sample preparation optimization. Additionally, this is one of the first accounts of LIFT being utilized for the direct sequencing of peptides from isolated senile plaques. While many of the species observed coisolated within senile plaques have been linked to AD etiology, if only speculatively, this is the first instance that many of them have been demonstrated to be a part of the plaques themselves. This work is the first step in determining the potential roles that the species may have in the aggregation or proliferation of the plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.7b00445DOI Listing

Publication Analysis

Top Keywords

senile plaques
24
isolated senile
8
plaques
8
plaques brains
8
senile
6
characterization proteins
4
proteins isolated
4
plaques alzheimer's
4
alzheimer's diseased
4
diseased brains
4

Similar Publications

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Background: Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque.

Objectives: To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD).

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies.

Int J Mol Sci

December 2024

Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.

Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!