Primate area V2 contains a repetitive pattern of thick, thin and pale cytochrome oxidase stripes that are characterized by largely discrete in- and output channels, as well as differences in function, and myelo- and cytoarchitecture. Stripes have been identified mainly using microscope-based imaging of tiny portions of superficially located V2, or by postmortem methods, hence, the quest for (quasi) noninvasive tools to study these mesoscale functional units. Only recently, stripe-like V2 patterns have been demonstrated in humans with high-field (functional) magnetic resonance imaging (f)MRI, but in both such studies only 2 stripe compartments could be identified. Although interstripe distances in monkeys are ~half of those in humans, we show that all 3 V2 stripe classes can be reliably separated using submillimeter (f)MRI (0.6 mm isotropic voxels) on regular 3 T scanners by combining contrast agents and implanted phased-array coils. Specifically, we show highly reproducible fMRI patterns, both within and across subjects, of color-selective thin and disparity-selective thick stripes. Furthermore, reliable MRI-based higher myelin-density was observed in pale stripes. Hence, this is the first study showing segregation of columns using (f)MRI-based methods in macaque cortex, which opens the possibility of studying these elementary building blocks of the visual system noninvasively on a large scale.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhx337DOI Listing

Publication Analysis

Top Keywords

thick thin
8
thin pale
8
pale stripes
8
stripes
5
vivo identification
4
identification thick
4
stripes macaque
4
macaque area
4
area submillimeter
4
submillimeter resolution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!