The use of nucleic acid, DNA and RNA, based strategies to disrupt gene expression as a therapeutic is quickly emerging. Indeed, synthetic oligonucleotides represent a major component of modern gene therapeutics. However, the efficiency and specificity of intracellular uptake for nonmodified oligonucleotides is rather poor. Utilizing RNA based oligonucleotides as therapeutics is even more challenging to deliver, due to extremely fast enzymatic degradation of the RNAs. RNAs get rapidly degraded in vivo and demonstrate large off-target binding events when they can reach and enter the desired target cells. One approach that holds much promise is the utilization of "click chemistry" to conjugate receptor or cell specific targeting molecules directly to the effector oligonucleotides. We discuss here the applications of the breakthrough technology of CuAAC click chemistry and the immense potential in utilizing "click chemistry" in the development of new age targeted oligonucleotide therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078818PMC
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00765DOI Listing

Publication Analysis

Top Keywords

gene therapeutics
8
rna based
8
"click chemistry"
8
"clicking" gene
4
therapeutics
4
therapeutics successful
4
successful union
4
union chemistry
4
chemistry biomedicine
4
biomedicine solutions
4

Similar Publications

Recent Advancements in Drug Targeting for Ferroptosis as an Antitumor Therapy: Development of Novel therapeutics.

Curr Cancer Drug Targets

January 2025

Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.

Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.

Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is the second most common malignancy of the hematopoietic system, accounting for approximately 10% of all hematological malignancies, and currently, there is no complete cure. Existing research indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial regulatory role in the initiation and progression of tumors, involving various interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding proteins (RBP). Despite the significant clinical application potential of exosomal lncRNAs, research in this area still faces challenges due to their low abundance and technical limitations.

View Article and Find Full Text PDF

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

JACS Au

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.

View Article and Find Full Text PDF

Dental pulp stem cells hold significant prospects for tooth regeneration and repair. However, a comprehensive understanding of the molecular differences between dental pulp stem cells (DPSC, from permanent teeth) and stem cells from human exfoliated deciduous teeth (SHED, from deciduous teeth) remains elusive, which is crucial for optimizing their therapeutic potential. To address this gap, we employed a novel data-independent acquisition (DIA) proteomics approach to compare the protein expression profiles of DPSC and SHED.

View Article and Find Full Text PDF

Background: Stroke is one of the leading causes of death and long-term adult disability worldwide. Stroke causes neurodegeneration and impairs synaptic function. Understanding the role of synaptic proteins and associated signalling pathways in stroke pathology could offer insights into therapeutic approaches as well as improving rehabilitation-related treatment regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!