A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796386PMC
http://dx.doi.org/10.3390/s18010116DOI Listing

Publication Analysis

Top Keywords

plasmonic refractive
8
refractive sensor
8
high figure
8
figure merit
8
sensor high
4
merit based
4
based concentric-rings
4
concentric-rings resonator
4
resonator plasmonic
4
sensor based
4

Similar Publications

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Analysis of Refractive Index Sensing Properties of a Hybrid Hollow Cylindrical Tetramer Array.

Nanomaterials (Basel)

January 2025

Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.

In recent years, metal surface plasmon resonance sensors and dielectric guided-mode resonance sensors have attracted the attention of researchers. Metal sensors are sensitive to environmental disturbances but have high optical losses, while dielectric sensors have low losses but limited sensitivity. To overcome these limitations, hybrid resonance sensors that combine the advantages of metal and dielectric were proposed to achieve a high sensitivity and a high factor at the same time.

View Article and Find Full Text PDF

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Biosensors (Basel)

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation.

View Article and Find Full Text PDF

Understanding the interactions between molecules and sensing elements is crucial to improving sensors. We present one step toward getting closer to the breach between theory and empirical sensor development. Through density functional theory (DFT) calculations, we explored the changes in some optical properties of pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) interacting with one molecule of acetaminophen (APAP).

View Article and Find Full Text PDF

Some microorganisms, including lactic acid bacteria (LAB), can bind to mycotoxins. Its binding ability is useful for mycotoxin mitigation. Conventionally, the binding assay for this ability of microorganisms to mycotoxins has been performed by the so-called in vitro assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!