We use Monte Carlo simulations of a coarse-grained model to investigate structure and electrochemical behaviours at an electrode immersed in room temperature ionic liquids (RTILs). The simple RTIL model, which we denote the asymmetric restricted primitive model (ARPM), is composed of monovalent hard-sphere ions, all of the same size, in which the charge is asymmetrically placed. Not only the hard-sphere size (d), but also the charge displacement (b), is identical for all species, i.e. the monovalent RTIL ions are fully described by only two parameters (d, b). In earlier work, it was demonstrated that the ARPM can capture typical static RTIL properties in bulk solutions with remarkable accuracy. Here, we investigate its behaviour at an electrode surface. The electrode is assumed to be a perfect conductor and image charge methods are utilized to handle polarization effects. We find that the ARPM of the ionic liquid reproduces typical (static) electrochemical properties of RTILs. Our model predicts a declining differential capacitance with increasing temperature, which is expected from simple physical arguments. We also compare our ARPM, with the corresponding RPM description, at an elevated temperature (1000 K). We conclude that, even though ion pairing occurs in the ARPM system, reducing the concentration of 'free' ions, it is still better able to screen charge than a corresponding RPM melt. Finally, we evaluate the option to coarse-grain the model even further, by treating the fraction of the ions that form ion pairs implicitly, only through the contribution to the dielectric constant of the corresponding dipolar (ion pair) fluid. We conclude that this primitive representation of ion pairing is not able to reproduce the structures and differential capacitances of the system with explicit ion pairs. The main problem seems to be due to a limited dielectric screening in a layer near the electrode surface, resulting from a combination of orientational restrictions and a depleted dipole density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aaa524 | DOI Listing |
Sci Rep
December 2024
School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:
A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Unit of Chemical Technologies, Technology Centre of Catalonia, Eurecat, 43007 Tarragona, Spain.
The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.
View Article and Find Full Text PDFGels
December 2024
School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).
View Article and Find Full Text PDFGels
December 2024
Quantum Technologies Research Center, Science and Research Branch, Islamic, Azad University, Tehran 1477893855, Iran.
Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!