The retinal rod outer segment (OS) is a stack of disks surrounded by the plasma membrane, housing proteins related to phototransduction, as well as mitochondrial proteins involved in oxidative phosphorylation (OxPhos). This prompted us to compare the proteome of bovine OS disks and mitochondria to assess the significant top gene signatures of each sample. The two proteomes, obtained by LTQ-Orbitrap Velos mass spectrometry, were compared by statistical analyses. In total, 4139 proteins were identified, 2045 of which overlapping in the two sets. Nonhierarchical Spearman's correlogram revealed that the groups were clearly discriminated. Partial least square discriminant plus support vector machine analysis identified the major discriminative proteins, implied in phototransduction and lipid metabolism, respectively. Gene Ontology analysis identified top gene signatures of the disk proteome, enriched in vesiculation, glycolysis, and OxPhos proteins. The tricarboxylic acid cycle and the electron transport proteins were similarly enriched in the two samples, but the latter was up regulated in disks. Data suggest that the mitochondrial OxPhos proteins may represent a true OS proteome component, outside the mitochondrion. This knowledge may help the scientific community in the further studies of retinal physiology and pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.7b00741 | DOI Listing |
Regen Med
January 2025
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.
View Article and Find Full Text PDFRes Vet Sci
December 2024
Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil. Electronic address:
Although sperm sexing technology has progressed considerably in the last decade, there are still challenges to fully understand the reason for the low fertility of sexed sperm. Thus, we aimed to evaluate the effect of sexed and non-sexed sperm on the proteome of bovine oviduct epithelial cells (BOECs). Semen from six Nellore bulls was used and one ejaculate from each bull was collected and separated into three fractions: non-sexed, sexed for X-sperm and sexed for Y-sperm.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
Unregulated, systemic inflammation negatively impacts health and production in dairy cows. Soluble mediators and platelets have been studied for their expansive role in mediating inflammation. Our objectives were to compare the plasma oxylipin and endocannabinoid profiles, and the platelet and plasma proteomic profiles of healthy cows to cows experiencing elevated systemic inflammation as indicated by plasma haptoglobin (Hp) concentrations.
View Article and Find Full Text PDFMol Med
December 2024
Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
Vertebrates differ over 100,000-fold in responses to pro-inflammatory agonists such as bacterial lipopolysaccharide (LPS), complicating use of animal models to study human sepsis or inflammatory disorders. We compared transcriptomes of resting and LPS-exposed blood from six LPS-sensitive species (rabbit, pig, sheep, cow, chimpanzee, human) and four LPS-resilient species (mice, rats, baboon, rhesus), as well as plasma proteomes and lipidomes. Unexpectedly, at baseline, sensitive species already had enhanced expression of LPS-responsive genes relative to resilient species.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil.
Background: Advancements in metabolomic technologies have revolutionized our understanding of feed efficiency (FE) in livestock, offering new pathways to enhance both profitability and sustainability in ruminant production.
Methods: This review offers a critical and systematic evaluation of the metabolomics methods used to measure and assess FE in ruminants. We conducted a comprehensive search of PubMed, Web of Science, and Scopus databases, covering publications from 1971 to 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!