Syngameons are sets of species linked by interspecific hybridization. Common observations regarding the structure of syngameons are that hybridization propensity is not uniform across species and that patterns of hybridization are dominated by a few species. I use computer simulations to test these claims in naturally occurring syngameons selected from the literature and from personal observation. Natural syngameons, especially those involving plants, typically exhibit nonrandom structure: The first three order statistics for the number of hybrid partners and the variance in the number of hybrid partners are larger than chance alone would predict. The structure of two insect syngameons examined is not significantly different from random. To test a hypothesis that variation in hybridization propensity across species in natural syngameons is simply an artifact of hybridization opportunity, I examine the structure of four artificial syngameons (fertility relationships) produced by full diallel crosses. Three of four artificial syngameons exhibit nonrandom structure, as the observed variation in number of successful crosses is larger than chance alone would predict. In general, there are no significant results involving the order statistics. Finally, I discuss biogeographic, ecological, and phylogenetic hypotheses for variation in hybridization propensity across species in natural syngameons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743628PMC
http://dx.doi.org/10.1002/ece3.3507DOI Listing

Publication Analysis

Top Keywords

hybridization propensity
12
natural syngameons
12
syngameons
9
exhibit nonrandom
8
nonrandom structure
8
order statistics
8
number hybrid
8
hybrid partners
8
larger chance
8
chance predict
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!