AKT (also known as protein kinase B, PKB) plays an important role in cell survival or tumor progression. For these reasons, AKT is an emerging target for cancer therapeutics. Previously our studies showed that mitochondrial E3 ubiquitin protein ligase 1 (MUL1, also known as MULAN/GIDE/MAPL) is suppressed in head and neck cancer (HNC) and acts as negative regulator against AKT. However, the MUL1 regulatory mechanisms remain largely unknown. Here we report that cisplatin (CDDP) induces thyroid cancer cell death through MUL1-AKT axis. Specifically, CDDP-induced MUL1 leads to ubiquitylation of active form of AKT. We also observed that the role of forkhead box O3 (FOXO3) is pivotal in CDDP-induced MUL1 regulation. FOXO3 knock-downed cells show resistance against CDDP-mediated MUL1-AKT axis. CDDP-mediated intracellular ROS increment plays an important role in FOXO3-MUL1-AKT signal pathway. The data provide compelling evidence to support the idea that the regulation of FOXO3-MUL1-AKT axis can be a novel strategy for the treatment of HNC with CDDP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746397PMC
http://dx.doi.org/10.18632/oncotarget.22793DOI Listing

Publication Analysis

Top Keywords

akt mul1
8
mul1 regulation
8
plays role
8
mul1-akt axis
8
cddp-induced mul1
8
akt
5
mul1
5
foxo3 induces
4
induces ubiquitylation
4
ubiquitylation akt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!