A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HIF-1α contributes to hypoxia adaptation of the naked mole rat. | LitMetric

AI Article Synopsis

  • Naked mole rats (NMRs) show remarkable tolerance to long-term low oxygen levels (hypoxia), and this study investigates the roles of HIF-1α and VEGFA in their adaptation to hypoxia.
  • The researchers compared primary hepatic stellate cells (HSCs) from NMRs and mice, finding higher HIF-1α and VEGFA levels in NMRs, but apoptosis rates increased when HIF-1α was inhibited or VEGFA was blocked.
  • The findings suggest that HIF-1α is crucial for hypoxia adaptation in NMRs, and its activation leads to increased VEGFA expression, highlighting a potential protective mechanism against hypoxia-induced cell death.

Article Abstract

Background/aims: Naked mole rats (NMRs) spend their lives in burrow systems containing very low levels of oxygen, indicating long-term hypoxic exposure, and suggesting that pathological changes caused by hypoxia are attenuated or absent in this hypoxia-tolerant species. The mechanisms underlying NMRs hypoxia tolerance remain poorly understood. In this study, we explored whether hypoxia inducible factor 1α (HIF-1α), and vascular endothelial growth factor A (VEGFA) play a role in NMRs adaption to hypoxia.

Methods: Primary hepatic stellate cells (HSCs) isolated from NMRs and mice were treated with 50 μM YC-1, 50 μM KC7F2 or VEGFA siRNA. HIF-1α or VEGFA expression was detected by Western blot and real-time PCR. Apoptosis was determined by flow cytometry. The expression of autophagy markers (LC3 and p62) was detected by Western blot.

Results: Our results showed that HIF-1α and VEGFA expression in NMRs was significantly higher than in hypoxia-sensitive mice. Inhibition of HIF-1α expression induced apoptosis in both NMR and mouse HSCs following hypoxia. However, blocking VEGFA transcription results in a significant increase of apoptosis in both NMR and mouse HSCs before and after hypoxia. In addition, NMR HSCs displayed higher levels of autophagy (ratio of LC3ΙΙ/LC3Ι = 9.6) than mouse HSCs (relative ratio of LC3ΙΙ/ LC3Ι = 4.9) under hypoxic conditions.

Conclusion: We conclude that HIF-1α activation may be an important mechanism for hypoxia adaption. However, high expression of VEGFA follows HIF-1α activation in NMRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746355PMC
http://dx.doi.org/10.18632/oncotarget.22767DOI Listing

Publication Analysis

Top Keywords

mouse hscs
12
naked mole
8
hif-1α vegfa
8
vegfa expression
8
detected western
8
apoptosis nmr
8
nmr mouse
8
hscs hypoxia
8
hif-1α activation
8
hif-1α
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!