Several neuronal populations orchestrate neocortical development during mammalian embryogenesis. These include the glutamatergic subplate-, Cajal-Retzius-, and ventral pallium-derived populations, which coordinate cortical wiring, migration, and proliferation, respectively. These transient populations are primarily derived from other non-cortical pallial sources that migrate to the dorsal pallium. Are these migrations to the dorsal pallium conserved in amniotes or are they specific to mammals? Using in ovo electroporation, we traced the entire lineage of defined chick telencephalic progenitors. We found that several pallial sources that produce tangential migratory neurons in mammals only produced radially migrating neurons in the avian brain. Moreover, ectopic expression of VP-specific mammalian Dbx1 in avian brains altered neurogenesis but did not convert the migration into a mammal-like tangential movement. Together, these data indicate that tangential cellular contributions of glutamatergic neurons originate from outside the dorsal pallium and that pallial Dbx1 expression may underlie the generation of the mammalian neocortex during evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770341 | PMC |
http://dx.doi.org/10.1016/j.celrep.2017.12.032 | DOI Listing |
Behav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Laboratorio di Biologia, Scuola Normale Superiore, 56126 Pisa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy. Electronic address:
The mechanisms that determine distinct embryonic pallial identities remain elusive. The central role of Wnt signaling in directing dorsal telencephalic progenitors to the isocortex or hippocampus has been elucidated. Here, we show that timely inhibition of MAPK/ERK and BMP signaling in neuralized mouse embryonic stem cells (ESCs) specifies a cell identity characteristic of the allocortex.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China. Electronic address:
The human cerebral cortex is known for its hemispheric specialization, which underpins a variety of functions and activities. However, it is not well understood if similar lateralization exists within the deep gray matter nuclei, such as the basal ganglia (BG) and thalamus, and their associated arteries, including the lenticulostriate arteries (LSAs). To explore this, we analyzed images from 7T MRI scans of 40 healthy young individuals.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Neuro Electronics Res. Flanders (NERF), Heverlee, 3001, Belgium.
Neuropixels probes contain thousands of electrodes across one or more shanks and are sufficiently small to allow chronic recording of neural activity in freely behaving small animals. However, the joint increase in the number of electrodes and miniaturization of the probe package has led to a compromise in which groups of electrodes share a single read-out channel and only a fraction of the electrodes can be read out at any given time. Experimenters then face the challenge of selecting a subset of electrodes (i.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!