Because they provide lower cost but comparable activity to precious platinum (Pt)-based catalysts, nonprecious iron (Fe)-based materials, such as Fe/FeC and Fe-N-C, have gained considerable attention as electrocatalysts for the oxygen reduction reaction (ORR). However, their practical application is hindered by their poor stability, which is attributed to the defective protection of extremely unstable Fe nanoparticles. Here, we introduce a synthesis strategy for a stable Fe-based electrocatalyst, which was realized by defect-free encapsulation of Fe nanoparticles using a two-dimensional (2D) phenazine-based fused aromatic porous organic network (Aza-PON). The resulting Fe@Aza-PON catalyst showed electrocatalytic activity (half-wave potential, 0.839 V; Tafel slope, 60 mV decade) comparable to commercial Pt on activated carbon (Pt/C, 0.826 V and 90 mV decade). More importantly, the Fe@Aza-PON displayed outstanding stability (zero current loss even after 100 000 cycles) and tolerance against contamination (methanol and CO poisoning). In a hybrid Li-air battery test, the Fe@Aza-PON demonstrated performance superior to Pt/C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b10663DOI Listing

Publication Analysis

Top Keywords

defect-free encapsulation
8
oxygen reduction
8
encapsulation fused
4
fused organic
4
organic networks
4
networks durable
4
durable oxygen
4
reduction electrocatalyst
4
electrocatalyst provide
4
provide lower
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!