Dengue virus (DENV) is one of the most widespread arboviruses. The four DENV serotypes infect about 400 million people every year, causing 96 million clinical dengue cases, of which approximately 500'000 are severe and potentially life-threatening. The only licensed vaccine has a limited efficacy and is only recommended in regions with high endemicity. We previously reported that 2'-O-methyltransferase mutations in DENV-1 and DENV-2 block their capacity to inhibit type I IFNs and render the viruses attenuated in vivo, making them amenable as vaccine strains; here we apply this strategy to all four DENV serotypes to generate a tetravalent, non-chimeric live-attenuated dengue vaccine. 2'-O-methyltransferase mutants of all four serotypes are highly sensitive to type I IFN inhibition in human cells. The tetravalent formulation is attenuated and immunogenic in mice and cynomolgus macaques and elicits a response that protects from virus challenge. These results show the potential of 2'-O-methyltransferase mutant viruses as a safe, tetravalent, non-chimeric dengue vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751980 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189262 | PLOS |
PLoS Pathog
October 2024
Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany.
The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes.
View Article and Find Full Text PDFVirus Res
October 2023
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA. Electronic address:
Coronaviruses (CoVs) have been the source of multiple epidemics and a global pandemic since the start of century, and there is an urgent need to understand CoV biology and develop better therapeutics. Here, we review the role of NSP16 in CoV replication, specifically its importance to 2'-O-methylation and CoV RNA capping. We describe the attenuation phenotypes of NSP16-mutant CoVs, the roles of MDA5 and IFITs in sensing and antagonizing viral RNA lacking 2'O methylation, and the dependence on 2'-O-methylation in other virus families.
View Article and Find Full Text PDFJ Virol
February 2023
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.
Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'--methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process.
View Article and Find Full Text PDFbioRxiv
September 2022
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
Unlabelled: Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process.
View Article and Find Full Text PDFRNA
September 2022
Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium.
A previous bioinformatic analysis predicted that the open reading frame of encodes an RNA methyltransferase of the SPOUT superfamily. Here we show that YsgA is the 2'--methyltransferase that targets position G2553 ( numbering) of the A-loop of 23S rRNA. This was shown by a combination of biochemical and mass spectrometry approaches using both rRNA extracted from wild-type or cells and in vitro synthesized rRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!