A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fe(II) Ion Release during Endocytotic Uptake of Iron Visualized by a Membrane-Anchoring Fe(II) Fluorescent Probe. | LitMetric

Iron is an essential transition metal species for all living organisms and plays various physiologically important roles on the basis of its redox activity; accordingly, the disruption of iron homeostasis triggers oxidative stress and cellular damage. Therefore, cells have developed sophisticated iron-uptake machinery to acquire iron while protecting cells from uncontrolled oxidative damage during the uptake process. To examine the detailed mechanism of iron uptake while controlling the redox status, it is necessary to develop useful methods with redox state selectivity, sensitivity, and organelle specificity to monitor labile iron, which is weakly bound to subcellular ligands. Here, we report the development of Mem-RhoNox to monitor local Fe(II) at the surface of the plasma membrane of living cells. The redox state-selective fluorescence response of the probe relies on our recently developed N-oxide strategy, which is applicable to fluorophores with dialkylarylamine in their π-conjugation systems. Mem-RhoNox consists of the N-oxygenated rhodamine scaffold, which has two arms, both of which are tethered with palmitoyl groups as membrane-anchoring domains. In an aqueous buffer, Ac-RhoNox, a model compound of Mem-RhoNox, shows a fluorescence turn-on response to the Fe(II) redox state-selectively. An imaging study with Mem-RhoNox and its derivatives reveals that labile Fe(II) is transiently generated during the major iron-uptake pathways: endocytotic uptake and direct transport. Furthermore, Mem-RhoNox is capable of monitoring endosomal Fe(II) in primary cultured neurons during endocytotic uptake. This report is the first example that identifies the generation of Fe(II) over the course of cellular iron-uptake processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.7b00939DOI Listing

Publication Analysis

Top Keywords

endocytotic uptake
12
feii
7
iron
6
uptake
5
redox
5
mem-rhonox
5
feii ion
4
ion release
4
release endocytotic
4
uptake iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!