LiTiO (LTO) is regarded as a promising lithium-ion battery anode due to its stable cyclic performance and reliable operation safety. The moderate rate performance originated from the poor intrinsic electron and lithium-ion conductivities of the LTO has significantly limited its wide applications. A facile scalable synthesis of hierarchical LiTiO/C nanohybrids with supersmall LTO nanoparticles (ca. 17 nm in diameter) homogeneously embedded in the continuous submicrometer-sized carbon matrix is developed. Difunctional methacrylate monomers are used as solvent and carbon source to generate TiO/C nanohybrid, which is in situ converted to LTO/C via a solid-state reaction procedure. The structure, morphology, crystallinity, composition, tap density, and electrochemical performance of the LTO/C nanohybrid are systematically investigated. Comparing to the control sample of the commercial LTO composited with carbon, the reversible specific capacity after 1000 cycles at 175 mA g and rate performance at high current densities (875, 1750, and 3500 mA g) of the LiTiO/C nanohybrid have been significantly improved. The enhanced electrochemical performance is due to the unique structure feature, where the supersmall LTO nanoparticles are homogeneously embedded in the continuous carbon matrix. Good tap density is also achieved with the LTO/C nanohybrid due to its hierarchical micro-/nanohybrid structure, which is even higher than that of the commercial LTO powder.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b16578DOI Listing

Publication Analysis

Top Keywords

homogeneously embedded
12
carbon matrix
12
nanoparticles homogeneously
8
rate performance
8
supersmall lto
8
lto nanoparticles
8
embedded continuous
8
tap density
8
electrochemical performance
8
lto/c nanohybrid
8

Similar Publications

Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.

View Article and Find Full Text PDF

There are powerful tools for modelling swarms that have strong spatial structures like flocks of birds, schools of fish and formations of drones, but relatively little work on developing formalisms for other swarm structures like hub-based colonies doing foraging, maintaining a nest or selecting a new nest site. We present a method for finding low-dimensional representations of swarm state for simulated homogeneous hub-based colonies solving the best-of-N problem. The embeddings are obtained from latent representations of convolution-based graph neural network architectures and have the property that swarm states which have similar performance have very similar embeddings.

View Article and Find Full Text PDF

Time-Domain Bound States in the Continuum.

Phys Rev Lett

December 2024

Technion, Department of Electrical and Computer Engineering, Haifa 32000, Israel.

We present the concept of time-domain bound states in continuum. We show that a rapid judiciously designed temporal modulation of the refractive index in a spatially homogenous medium gives rise to a bound state in time, embedded in a continuum of wave numbers. Mathematically, these bound states in the continuum are closed form solutions of the Maxwell equations in time and one-dimensional space.

View Article and Find Full Text PDF

Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an ensemble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory of individual tracers is ideal for homogeneous materials that do not interact with the particles. By contrast, the characterization of heterogeneous, micro-structured materials or those where particles interact directly with the medium requires a two-particle analysis that characterizes correlations between the trajectories of distinct particle pairs.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!