This review reflects the current state of simulation technologies in neurosurgery and, in particular, in spinal surgery. Currently, there are different types of simulations used in spine surgery including the biological, artificial and virtual models. Simulations help to facilitate an optimal study of the anatomy, understand the spatial relationships between organs and tissues, plan properly the surgical intervention, and gain tactile surgical skills. The implementation of simulation technologies in the educational process provides objective assessment of the initial level of training, improvement of the competence in trained professionals, as well as prevention of surgical errors in various clinical situations.

Download full-text PDF

Source
http://dx.doi.org/10.15690/vramn681DOI Listing

Publication Analysis

Top Keywords

simulation technologies
8
[simulation technologies
4
technologies spinal
4
spinal surgery]
4
surgery] review
4
review reflects
4
reflects current
4
current state
4
state simulation
4
technologies neurosurgery
4

Similar Publications

Objectives: Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery.

View Article and Find Full Text PDF

Discovering non-associated pressure-sensitive plasticity models with EUCLID.

Adv Model Simul Eng Sci

January 2025

Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.

We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.

View Article and Find Full Text PDF

Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat.

View Article and Find Full Text PDF

Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor.

Food Sci Anim Resour

January 2025

Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.

Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review.

View Article and Find Full Text PDF

Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!