[Ultraviolet Corneal Crosslinking].

Vestn Ross Akad Med Nauk

Published: February 2018

This review presents basic information on UV corneal crosslinking. The method is widely used in ophthalmology to treat various types of ectasia, which are characterized by progressive degenerative changes in the cornea, associated with its thinning , hazing and scarring, which leads to a significant reduction in visual acuity. Crosslinking is based on ultraviolet (UV) irradiation of the cornea wavelength 370 nm in the presence of riboflavin, leading to photochemical intracorneal interactions. As a result of crosslinking of collagen treatments, an increase of strength and mechanical properties of the cornea, stops the progression of the disease. The article displays the steps of the method development and the ways of its implementation are described especially occurring biomechanical, biochemical, morphological and ultrastructural changes, as well as the main areas of clinical application of riboflavin-UV-A-induced crosslinking of cornea.

Download full-text PDF

Source
http://dx.doi.org/10.15690/vramn562DOI Listing

Publication Analysis

Top Keywords

[ultraviolet corneal
4
corneal crosslinking]
4
crosslinking] review
4
review presents
4
presents basic
4
basic corneal
4
crosslinking
4
corneal crosslinking
4
crosslinking method
4
method ophthalmology
4

Similar Publications

External environments (e.g., pollutants, irritants, ultraviolet radiation, etc) probably activate oxidative stress on the ocular surface, further leading to inflammatory responses and cellular apoptosis.

View Article and Find Full Text PDF

The cornea is the primary refracting surface of the eye, requiring precise curvature to ensure optimal vision. Any distortion in its shape may result in significant visual impairment. Corneal ectasias, such as keratoconus (KC), is characterized by gradual thinning and protrusion of the thinned area, due to biomechanical weakening of the tissue, leading to astigmatism and vision loss.

View Article and Find Full Text PDF

Topography-guided, patterned, customized corneal crosslinking for non-invasive astigmatism correction.

Eye (Lond)

January 2025

Bio-manufacturing Engineering Laboratory, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China.

Objectives: To propose and evaluate a novel, non-invasive approach for enduring corneal astigmatism correction based on topography-guided, patterned, customized riboflavin-ultraviolet A corneal collagen crosslinking (CXL).

Methods: Astigmatism was modelled on both eyes of rabbits. A randomly selected eye of each rabbit was treated by the proposed CXL procedure with another eye as control.

View Article and Find Full Text PDF

Purpose: To investigate the effectiveness of mitochondrial-targeted antioxidant mitoquinone (MitoQ) and nontargeted antioxidant idebenone (Idb) in alleviating mitochondrial dysfunction in corneal endothelial cells (CEnCs).

Methods: In vitro experiments were conducted using immortalized normal human corneal endothelial cells (HCEnC-21T; SVN1-67F) and Fuchs endothelial corneal dystrophy (FECD) cells (SVF5-54F; SVF3-76M). Cells were pretreated with MitoQ or Idb and then exposed to menadione (MN) with simultaneous antioxidant treatment.

View Article and Find Full Text PDF

In vitro anti-biofilm efficacy of therapeutic low dose 265 nm UVC.

J Photochem Photobiol B

January 2025

Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Purpose: Preclinical studies have confirmed the safety and efficacy of narrowband low-intensity ultraviolet C light (UVC) in managing bacterial corneal infection. To further consolidate these findings, the present study aimed to explore in vitro anti-biofilm efficacy of low-intensity UVC light for its potential use in biofilm-related infections.

Methods: Pseudomonas aeruginosa biofilm was grown in chamber well slides for 48 h and exposed to one of the following challenges: UVC (265 nm wavelength, intensity 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!