Background: Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins.
Results: Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested.
Conclusions: A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751789 | PMC |
http://dx.doi.org/10.1186/s12862-017-1107-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.
View Article and Find Full Text PDFPathogens
December 2024
Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA.
Tick-borne encephalitis virus (TBEV) causes neurological disease in humans, with varied clinical severity influenced by the viral subtype. TBEV is endemic to Mongolia, where both Siberian and Far-Eastern subtypes are present. is considered the main vector of TBEV in Mongolia; although, the virus has also been detected in species.
View Article and Find Full Text PDFVirus Res
January 2025
UK Health Security Agency, Science Group, Porton Down, Salisbury, UK; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection and Veterinary and Ecological Science, University of Liverpool, Liverpool, UK.
Tick-borne encephalitis virus (TBEV) is the most prevalent tick-borne viral disease in Europe and Asia. There are three main subtypes of the virus: European, Siberian, and Far Eastern, each of which having distinctive ecology, clinical presentation, and geographic distribution. In recent years, other TBEV subtypes have been described, namely the Himalayan and Baikalian subtypes.
View Article and Find Full Text PDFTicks Tick Borne Dis
December 2024
Krankenhaus Nordwest, Frankfurt, Germany.
Categorization systems for tick-borne encephalitis virus (TBEV) infection lack consistency in classifying disease severity. To evaluate the need for a standard, consensus-based categorisation system for TBEV infection across subtypes, we gathered an expert panel of clinicians and scientists with diverse expertise in TBEV infection. Consensus was sought using the Delphi technique, which consisted of 2 web-based survey questionnaires and a final, virtual, consensus-building exercise.
View Article and Find Full Text PDFJ Med Virol
December 2024
Central Medical Laboratories, Feldkirch, Austria.
Reported tick-borne-encephalitis (TBE) cases have been increasing in Western Austria, but no data are available on vaccination- and infection-specific seroprevalence. This study aimed to estimate current TBEV-seroprevalence in the region and inform prevention programs by comparing anti-NS1-based-incidence rates with reported case numbers and vaccination coverage. Between December 2023 and February 2024, serum samples from 4619 blood donors in Western Austria were collected and analyzed using TBEV- and WNV-IgG-ELISA assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!