The dihomo-γ-linolenic acid (DGLA)-derived metabolite of 12-lipoxygenase, 12-hydroxy-eicosatrienoic acid (12-HETrE), was recently shown to potently inhibit thrombus formation without prolonging bleeding in murine models. Although 12-HETrE was found to inhibit platelet activation via the Gα signaling pathway, the Gα-coupled receptor by which 12-HETrE mediates its antiplatelet effects has yet to be identified. Defining the receptor by which 12-HETrE exerts its effects is key to determining its therapeutic potential as an antiplatelet drug. Therefore, the goal of this study was to determine the Gα-coupled platelet receptor through which 12-HETrE exerts its antiplatelet effects. In this study, we showed that pharmacological inhibition of the prostacyclin (IP) receptor in human platelets or genetic ablation of IP in murine platelets prevented 12-HETrE from blocking aggregation in vitro. Furthermore, the antithrombotic effects of 12-HETrE were significantly diminished in IP knockout mice in vivo. Together these data demonstrate that the antiplatelet effects of 12-HETrE are at least partially dependent on IP signaling. Importantly, this work identified 12-HETrE as a novel regulator of IP signaling that may aid in the rationale for design of novel therapeutics to inhibit platelet function. Additionally, this study provides further insight into the mechanism by which DGLA supplementation inhibits platelets function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728320 | PMC |
http://dx.doi.org/10.1182/bloodadvances.2017006155 | DOI Listing |
Blood
November 2023
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI.
Cardiovascular disease remains the primary cause of morbidity and mortality globally. Platelet activation is critical for maintaining hemostasis and preventing the leakage of blood cells from the vessel. There has been a paucity in the development of new drugs to target platelet reactivity.
View Article and Find Full Text PDFBlood
March 2022
Department of Cardiology and Angiology and.
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease (CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thromboinflammatory response through its impact on the platelet lipidome. CAD patients with enhanced platelet ACKR3/CXCR7 expression exhibited reduced aggregation.
View Article and Find Full Text PDFBlood Adv
June 2017
Department of Pharmacology, University of Michigan, Ann Arbor, MI.
The dihomo-γ-linolenic acid (DGLA)-derived metabolite of 12-lipoxygenase, 12-hydroxy-eicosatrienoic acid (12-HETrE), was recently shown to potently inhibit thrombus formation without prolonging bleeding in murine models. Although 12-HETrE was found to inhibit platelet activation via the Gα signaling pathway, the Gα-coupled receptor by which 12-HETrE mediates its antiplatelet effects has yet to be identified. Defining the receptor by which 12-HETrE exerts its effects is key to determining its therapeutic potential as an antiplatelet drug.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2016
From the Department of Pharmacology (J.Y., B.E.T., R.A., M.H.) and Department of Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor; Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, PA (J.Y., B.E.T., R.A., P.F.-P., J.Y., M.H.); and Department of Chemistry and Biochemistry, University of California Santa Cruz (A.R.G., C.J.F., T.R.H.).
Objective: Dietary supplementation with polyunsaturated fatty acids has been widely used for primary and secondary prevention of cardiovascular disease in individuals at risk; however, the cardioprotective benefits of polyunsaturated fatty acids remain controversial because of lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 polyunsaturated fatty acid, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-hydroxy-8Z,10E,14Z-eicosatrienoic acid (12(S)-HETrE), inhibiting platelet activation and thrombosis.
Approach And Results: DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX(-/-)).
Prostaglandins Other Lipid Mediat
January 2013
Cardiac Research Laboratory at the Felsenstein Medical Research Institute, Rabin Medical Center, Petah-Tikva and the Sackler Faculty of Medicine, Tel-Aviv University, Israel.
Background: Circulating endothelial progenitor cells (EPCs) are recruited from the blood system to sites of ischemia and endothelial damage, where they contribute to the repair and development of blood vessels. Since numerous eicosanoids including leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) have been shown to exert potent pro-inflammatory activities, we examined their levels in chronic diabetic patients with severe cardiac ischemia in conjunction with the level and function of EPCs.
Results: Lipidomic analysis revealed a diabetes-specific increase (p<0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!