The chronic lymphocytic leukemia (CLL) niche is a closed environment where leukemic cells derive growth and survival signals through their interaction with macrophages and T lymphocytes. Here, we show that the CLL lymph node niche is characterized by overexpression and activation of HIF-1α, which increases adenosine generation and signaling, affecting tumor and host cellular responses. Hypoxia in CLL lymphocytes modifies central metabolic pathways, protects against drug-driven apoptosis, and induces interleukin 10 (IL-10) production. In myeloid cells, it forces monocyte differentiation to macrophages expressing IRF4, IDO, CD163, and CD206, hallmarks of the M2 phenotype, which promotes tumor progression. It also induces IL-6 production and enhances nurturing properties. Low oxygen levels decrease T-cell proliferation, promote glycolysis, and cause the appearance of a population of PD-1 and IL-10-secreting T cells. Blockade of the A2A adenosine receptor counteracts these effects on all cell populations, making leukemic cells more susceptible to pharmacological agents while restoring immune competence and T-cell proliferation. Together, these results indicate that adenosine signaling through the A2A receptor mediates part of the effects of hypoxia. They also suggest that therapeutic strategies to inhibit the adenosinergic axis may be useful adjuncts to chemotherapy or tyrosine kinase inhibitors in the treatment of CLL patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744057PMC
http://dx.doi.org/10.1182/bloodadvances.2016000984DOI Listing

Publication Analysis

Top Keywords

adenosine signaling
8
chronic lymphocytic
8
lymphocytic leukemia
8
leukemic cells
8
t-cell proliferation
8
adenosine
4
signaling mediates
4
mediates hypoxic
4
hypoxic responses
4
responses chronic
4

Similar Publications

Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most commonly diagnosed primary malignant bone tumor in children and adolescents. Despite significant advancements in therapeutic strategies against OS over the past few decades, the prognosis for this disease remains poor, largely due to its high invasiveness and challenges associated with its treatment. N6-methyladenosine (m6A) modification is one of the most abundant epigenetic modifications of RNAs, and many studies have highlighted its crucial role in OS.

View Article and Find Full Text PDF

Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!