A reduced immune surveillance due to immune deficiency or treatment with immunosuppressive drugs is associated with a higher risk to develop aggressive Non-Hodgkin's lymphoma (NHL). Nevertheless, NHL also develops in immunocompetent patients indicating an escape from the immune system. T cell function in advanced aggressive lymphoma is not well characterized and the molecular mechanisms how malignant B cells influence T cell function are ill-defined. We therefore studied T cell function in Eμ-myc transgenic mice that develop an aggressive B cell lymphoma with some similarities to human Burkitt-lymphoma (BL). In advanced lymphoma, the number of T cells was severely reduced and the remaining CD4 and CD8 T cells lost the capacity to produce effector cytokines and expand upon re-stimulation. T cells in lymphoma-bearing mice were characterized by the expression of the immune inhibitory molecules programmed death (PD)-1, 2B4 and lymphocyte activation protein (LAG)-3. The proto-oncogene c-Myc not only drives cell proliferation and disease progression but also induces apoptosis of the malignant cells. We found that apoptotic lymphoma cells release purine metabolites that inhibit T cell function. Taken together, our data document that the characteristic high cell turnover and apoptotic rate in aggressive NHL induce a severe T cell dysfunction mediated by several immune-inhibitory mechanisms including ligation of inhibitory ligands and purine metabolites. Blocking a single mechanism only partially restored T cell function and did not increase survival of lymphoma mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739580 | PMC |
http://dx.doi.org/10.1080/2162402X.2017.1365997 | DOI Listing |
Plant Cell Environ
January 2025
Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.
View Article and Find Full Text PDFItal J Pediatr
January 2025
The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
Human adenovirus is an infectious agent that causes respiratory infections in adults and children. It has been found that immunocompromised children are highly susceptible to this pathogen, as it can swiftly evolve into severe pneumonia with multiple sequelae. Due to the lack of immunity in children, the body's response mechanisms to innate and acquired immunity are specialized.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!