Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiosurgery first became a clinical option in the 1960's because of the Gamma Knife, and the technology proliferated in the 1980's due to the availability of linear accelerator radiosurgery. The technology has continued to develop with both Gamma Knife and linac radiosurgery due primarily to advances in computer technology and robotic automation. Many of these advances include planning systems that enhance the conformity of the dose distribution, and delivery systems that can more safely and efficiently delivery these more complex treatment plans. This manuscript details the evolution of technologies in stereotactic localization and delivery for intracranial radiosurgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658896 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!