Purpose: Retinal ischemic phenomena occur in several ocular diseases that share the degeneration and death of retinal ganglion cells (RGCs) as the final event. We tested the neuroprotective effect of azithromycin, a widely used semisynthetic macrolide antibiotic endowed with anti-inflammatory and immunomodulatory properties, in a model of retinal ischemic injury induced by transient elevation of intraocular pressure in the rat.
Methods: Retinal ischemia was induced in adult rats with transient elevation of intraocular pressure. RGCs were retrogradely labeled with Fluoro-Gold, and survival was assessed following a single dose of azithromycin given systemically at the end of the ischemia. The expression of death-associated proteins and extracellular signal-regulated kinase (ERK) activation was studied with western blotting. Expression and activity of matrix metalloproteinase-2 (MMP-2) and -9 were analyzed with gelatin zymography.
Results: Acute post-injury administration of azithromycin significantly prevented RGC death. This effect was accompanied by reduced calpain activity and prevention of Bcl-2-associated death promoter (Bad) upregulation. The observed neuroprotection was associated with a significant inhibition of MMP-2/-9 gelatinolytic activity and ERK1/2 phosphorylation.
Conclusions: Azithromycin provides neuroprotection by modifying the inflammatory state of the retina following ischemia/reperfusion injury suggesting potential for repurposing as a drug capable of limiting or preventing retinal neuronal damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741380 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!