In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750232PMC
http://dx.doi.org/10.1038/s41467-017-02497-xDOI Listing

Publication Analysis

Top Keywords

holliday junctions
12
rad54 oligomerization
12
rad54
11
rad54 n-terminal
8
n-terminal domain
8
branch migration
8
migration holliday
8
rad51 recombinase
8
find rad54
8
domain dna
4

Similar Publications

AT-rich sequence can cause structure variants such as translocations and its instability can be accelerated by replication stresses. When human 16p11.2 or 22q11.

View Article and Find Full Text PDF

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

Infection by human astrovirus (HAstV), a small, positive-strand RNA virus, is a major cause of gastroenteritis and has been implicated in an increasing number of severe, sometimes fatal, neurological diseases since 2008. Currently, there are no vaccines or antiviral treatments available to treat HAstV infection. An attractive target for antiviral therapeutics is the viral protease due to its essential functions throughout infection.

View Article and Find Full Text PDF

DNA crossover flexibilities upon discrete spacers revealed by single-molecule FRET.

Soft Matter

December 2024

Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, China.

Article Synopsis
  • The study employs origami techniques to integrate different spacers in double-stranded DNA structures and assesses their flexibility through single-molecule fluorescence resonance energy transfer (smFRET).
  • Findings reveal that traditional Holliday Junctions with zero-base spacers show an inter-structural angle of 58.7 degrees, consistent with prior crystallographic data, while longer non-complementary spacers lead to a looser configuration.
  • The research emphasizes that stable DNA duplexes require at least 5 base pairs and suggests potential applications in materials that can change volume and in torque sensing using short DNA structures.
View Article and Find Full Text PDF

Polymorphic potential of SRF binding site of gene promoter: study.

RSC Adv

November 2024

Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471.

Recently published observations have highlighted the presence of cruciform structures within the genome, suggesting their potential significance in the rapid recognition of the target sequence for transcription factor binding. In this study, we investigate the organization and stability of the (coding) strand within the Serum Response Element of the gene promoter ( SRE), specifically focusing on segments spanning 12 to 36 nucleotides, centered around the CArG-box. Through a thorough examination of UV absorption patterns with varying temperatures, we identified the emergence of a remarkably stable structure, which we conclusively characterized as a hairpin using complementary H NMR experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!