Changes in bone matrix composition are frequently found with bone diseases and may be associated with increased fracture risk. Bone is rich in the trace element zinc. Zinc was established to play a significant role in the growth, development, and maintenance of healthy bones; however, the mechanisms underlying zinc effects on the integrity of the skeleton are poorly understood. Here, we show that the zinc receptor (ZnR)/Gpr39 is required for normal bone matrix deposition by osteoblasts. Initial analysis showed that Gpr39-deficient ( Gpr39) mice had weaker bones as a result of altered bone composition. Fourier transform infrared spectroscopy analysis showed high mineral-to-matrix ratios in the bones of Gpr39 mice. Histologic analysis showed abnormally high numbers of active osteoblasts but normal osteoclast numbers on the surfaces of bones from Gpr39 mice. Furthermore, Gpr39 osteoblasts had disorganized matrix deposition in vitro with cultures exhibiting abnormally low collagen and high mineral contents, findings that demonstrate a cell-intrinsic role for ZnR/Gpr39 in these cells. We show that both collagen synthesis and deposition by Gpr39 osteoblasts are perturbed. Finally, the expression of the zinc transporter Zip13 and a disintegrin and metalloproteinase with thrombospondin motifs family of zinc-dependent metalloproteases that regulate collagen processing was downregulated in Gpr39 osteoblasts. Altogether, our results suggest that zinc sensing by ZnR/Gpr39 affects the expression levels of zinc-dependent enzymes in osteoblasts and regulates collagen processing and deposition.-Jovanovic, M., Schmidt, F. N., Guterman-Ram, G., Khayyeri, H., Hiram-Bab, S., Orenbuch, A., Katchkovsky, S., Aflalo, A., Isaksson, H., Busse, B., Jähn, K., Levaot, N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201700661RR | DOI Listing |
Food Funct
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
Lactopontin (LPN) is an important milk protein with the potential to improve bone health; however, its specific effects have not been determined. This study aims to investigate the effects of LPN on early bone growth and development. 3 week-old SD rats ( = 32) were assigned to the control group, whey protein concentration (WPC) group, LPN-L (low-dose LPN) group, and LPN-H (high-dose LPN) group, with intragastric administration of deionized water, 65.
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan and College of Medical, Chang Gung University, Taoyuan, Taiwan.
Background: Deep sternal wound infection (DSWI) is a severe and life-threatening complication following cardiovascular surgery. Negative pressure wound therapy (NPWT) has emerged as a promising therapeutic bridging option for DSWI. In this systematic review and meta-analysis, the authors aimed to evaluate the impact of NPWT on clinical outcomes in patients with DSWI.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Black-bone silky fowls(Gallus gallus domesticus) have a long history of medicinal use, with the origin in Taihe county, Jiangxi province. The unclear family composition, inbreeding rate, and effective population size were inconducive to the resource conservation or breed improvement of black-bone silky fowls. A genome-wide analysis was performed to evaluate the genetic diversity of 80 black-bone silky fowls from random mating in three farms in 2021 in terms of minor allele frequency(MAF), expected heterozygosity(H_e), observed heterozygosity(H_o), effective population size(N_e), and runs of homozygosity(ROH).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFBackground/objectives: Bone marrow (BM) adipocytes are critical in progressing solid tumor metastases and hematological malignancies across pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including hematologic malignancies, but are limited in capturing the full complexity of loco-regional and global BM microenvironments. Non-invasive imaging techniques like Magnetic Resonance Imaging (MRI), could offer valuable alternatives for real-time evaluation of BM diseases in both preclinical translational and clinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!