A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Caffeine prevents bilirubin-induced cytotoxicity in cultured newborn rat astrocytes. | LitMetric

Caffeine prevents bilirubin-induced cytotoxicity in cultured newborn rat astrocytes.

J Matern Fetal Neonatal Med

c Department of Anatomy, Division of Neonatology, Faculty of Medicine , Pamukkale University, Denizli , Turkey.

Published: June 2019

Objective: Unconjugated bilirubin (UCB) may cause neurotoxicity in preterm neonates due to immaturity of UGT1A1 leading to bilirubin accumulation in the brain. Caffeine used in the treatment of apnea of prematurity was reported to decrease mechanical ventilation requirement, the frequencies of bronchopulmonary dysplasia, patent ductus arteriosus, cerebral palsy and neurodevelopmental disorders in very low birth weight infants. However, the effect of caffeine on hyperbilirubinemia was not yet clarified.

Methods: We used astrocyte cell cultures obtained from 2-day-old Wistar albino rats via modified Cole and de Vellis method. UCB concentration toxic to 50% of astrocytes, and caffeine concentration increasing cell viability 100% were used in experiments. While no medication was applied to the control group, UCB (50 μM) and caffeine (100 μM) were applied to the bilirubin and caffeine groups for 24 h. Prophylactic and therapeutic caffeine groups were treated with caffeine 4 h before and after UCB exposure. The effects of caffeine were investigated in rat astrocytes exposed to UCB in terms of cell viability, apoptosis, antioxidant defense, proinflammatory cytokines, and Toll-like receptor (TLR)s.

Results: Compared to the control group, UCB increased apoptosis, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, total nitrate/nitrite, and TLR4 levels, and decreased cell viability, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities, glutathione, and TLR9 levels (for all p < .001). Conversely, prophylactic and therapeutic caffeine improved the detrimental effects of UCB.

Conclusions: Caffeine seems encouraging for the prevention and treatment of bilirubin neurotoxicity in rats by means of its antiapoptotic, antioxidant, anti-inflammatory, anti-nitrosative, and anti-TLR-4 properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14767058.2017.1419175DOI Listing

Publication Analysis

Top Keywords

cell viability
12
caffeine
9
rat astrocytes
8
control group
8
group ucb
8
caffeine groups
8
ucb
6
caffeine prevents
4
prevents bilirubin-induced
4
bilirubin-induced cytotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!