AI Article Synopsis

  • Approximately 1% of babies are born with congenital heart defects (CHDs), but advancements in surgery have significantly improved survival rates into adulthood.
  • Ongoing monitoring is crucial for patients to track heart failure progression and decide when surgical interventions are needed; accurate quantification of heart shape and function plays a key role in this process.
  • Recent developments include a computational atlas that helps measure changes in heart structure, using z scores for comparison across populations, which aids in understanding and analyzing heart conditions.

Article Abstract

Approximately 1% of all babies are born with some form of congenital heart defect. Many serious forms of CHD can now be surgically corrected after birth, which has led to improved survival into adulthood. However, many patients require serial monitoring to evaluate progression of heart failure and determine timing of interventions. Accurate multidimensional quantification of regional heart shape and function is required for characterizing these patients. A computational atlas of single ventricle and biventricular heart shape and function enables quantification of remodeling in terms of z scores in relation to specific reference populations. Progression of disease can then be monitored effectively by longitudinal evaluation of z scores. A biomechanical analysis of cardiac function in relation to population variation enables investigation of the underlying mechanisms for developing pathology. Here, we summarize recent progress in this field, with examples in single ventricle and biventricular congenital pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910190PMC
http://dx.doi.org/10.1007/s12265-017-9778-5DOI Listing

Publication Analysis

Top Keywords

heart shape
12
shape function
12
congenital heart
8
single ventricle
8
ventricle biventricular
8
heart
6
atlas-based computational
4
computational analysis
4
analysis heart
4
function
4

Similar Publications

: Uric acid levels are linked to cardiovascular outcomes and mortality, especially in chronic kidney disease (CKD). However, their impact across varying kidney function remains unclear. : We conducted a retrospective cohort study using the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) database from a single center.

View Article and Find Full Text PDF

Simulating the cardiac valves is one of the most complex tasks in cardiovascular modeling. As fluid-structure interaction simulations are highly computationally demanding, machine-learning techniques can be considered a good alternative. Nevertheless, it is necessary to design many aortic valve geometries to generate a training set.

View Article and Find Full Text PDF

Frontal Paraventricular Cysts: Refined Definitions and Outcomes.

AJNR Am J Neuroradiol

January 2025

From the Division of Neuroradiology, Department of Radiology (M.T.W., A.M., C.A.P.F.A., O.S, E.S.S.), and Department of Obstetrics and Gynecology (N.K.), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine (M.T.W., N.K., E.S.S.), Philadelphia, PA, USA; Division of Neuroradiology, Department of Radiology (C.A.P.F.A), Boston Children's Hospital, Boston, MA, USA; and Harvard Medical School (C.A.P.F.A), Boston, MA, USA.

Background And Purpose: Frontal paraventricular cystic changes have a varied etiology that includes connatal cysts, subependymal pseudocysts, necrosis, and enlarged perivascular spaces. These may be difficult to distinguish by neuroimaging and have a variety of associated prognoses. We aim to refine the neuroimaging definition of frontal horn cysts and correlate it with adverse clinical conditions.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!