Galectin-10 (Gal-10) which forms Charcot-Leyden crystals in vivo, is crucial to regulating lymph cell function. Here, we solved the crystal structures of Gal-10 and eight variants at resolutions of 1.55-2.00 Å. Structural analysis and size exclusion chromatography demonstrated that Gal-10 dimerizes with a novel global shape that is different from that of other prototype galectins (e.g., Gal-1, -2 and -7). In the Gal-10 dimer, Glu33 from one subunit modifies the carbohydrate-binding site of another, essentially inhibiting disaccharide binding. Nevertheless, glycerol (and possibly other small hydroxylated molecules) can interact with residues at the ligand binding site, with His53 being the most crucial for binding. Alanine substitution of the conserved Trp residue (Trp72) that is crucial to saccharide binding in other galectins, actually leads to enhanced erythrocyte agglutination, suggesting that Trp72 negatively regulates Gal-10 ligand binding. Overall, our crystallographic and biochemical results provide insight into Gal-10 ligand binding specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/cwx107 | DOI Listing |
MedComm (2020)
January 2025
Department of Oncology Shanghai Medical College, Fudan University Shanghai China.
Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.
View Article and Find Full Text PDFIt is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.
View Article and Find Full Text PDFShort linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.
View Article and Find Full Text PDFThe interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.
View Article and Find Full Text PDFIn the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!