AI Article Synopsis

  • Understanding domestication is key for predicting how species, like the olive, will adapt to human influences and future environmental changes.
  • The olive tree plays a significant role in Mediterranean culture and agriculture, but there are still many unanswered questions about its domestication history.
  • Comprehensive studies combining various scientific approaches are needed to fully uncover the ecological and genetic changes associated with olive domestication.

Article Abstract

Background: Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully.

Scope: The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide.

Conclusion: The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838823PMC
http://dx.doi.org/10.1093/aob/mcx145DOI Listing

Publication Analysis

Top Keywords

domestication processes
12
domestication olive
8
processes clonally
8
clonally propagated
8
domestication history
8
remain unanswered
8
wild olives
8
mediterranean basin
8
olive
7
domestication
7

Similar Publications

Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions.

View Article and Find Full Text PDF

Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage.

View Article and Find Full Text PDF

Tef [ (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation.

View Article and Find Full Text PDF

Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo.

View Article and Find Full Text PDF

The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!